RNA-seq analysis of young swine following cardiac ischemia/reperfusion injury.
Ontology highlight
ABSTRACT: This study was a part of a larger study assessing the response of young pigs to cardiac ischemia/reperfusion (IR) injury. A mild cardiac injury approach (IR) was used in post-weaned pigs (1-month), to assess regenerative repair in young large mammals after transient ischemic injury. Female and male postnatal day (P)30 pigs were subjected to cardiac ischemia (1-hour) by occlusion of the left anterior descending artery followed by reperfusion (IR), or to sham operation. In pigs subjected to IR, myocardial damage occurred, indicated by increased circulating cardiac troponin I 2-hours post-ischemia. In addition, cardiac ejection fraction (EF) was significantly decreased 2-hours post-ischemia and reduced EF was maintained to the 4-week study end-point. Histology demonstrated evidence of CM cell cycling at 2-months of age in multinucleated CMs in both sham-operated and IR pigs. Following IR, regional scar formation and inflammation in the epicardial region proximal to injury were observed 4-weeks post-IR. Sex differences in cardiac function and collagen deposition were found, highlighting the importance of representing both sexes in cardiac injury studies. Together, our results describe an effective novel cardiac injury model in 1-month old swine, at a time when CM are still cycling. However, pigs subjected to IR show a prolonged decrease in cardiac function, and the formation of a small, regional scar with increased inflammation. Together, these data demonstrate that 1-month old pigs do not regenerate myocardium, but form a scar, after transient IR injury.
Project description:To develop a new therapeutic strategy for cardiac ischemia/reperfusion injury, we ablated the oxidative activation site of CaMKIIδ in the heart using CRISPR-Cas9 adenine base editing technology. Adult C57Bl6 mice were subjected to control surgery (IR-Sham, 3 biological replicates) or ischemia/reperfusion injury with either no injection (IR, 3 biological replicates), injection of a control virus (IR-Virus control, 3 biological replicates) or injection of a functional CaMKIIδ editing system (IR-Edit, 4 biological replicates). Five weeks after the surgery, hearts were harvested for RNA isolation and subsequent bulk RNA sequencing and gene expression profiling analysis.
Project description:Immune cell infiltration in response to myocyte death contributes to extracellular matrix (ECM) remodeling and scar formation after myocardial infarction (MI). Caspase-recruitment domain protein 9 (CARD9) which belongs to CARD family acts as an adapter that mediate the transduction of proinflammatory signaling cascades in innate immunity. To investigate the role of CARD9 in cardiac injury and repair post ischemia, we subjected Card9 knockout mice to myocardial infarction (MI) , and then performed RNA-seq and gene expression profiling analysis using the ischemic cardiac tissues at 3 days post-MI, to identify key genes and pathways regulated by CARD9.
Project description:Background The axon guidance cue Slit2 recently has been found to regulate calcium homeostasis and molecular signaling in various stress events in different organs. However, whether Slit2 plays a role in cardiac ischemia-reperfusion (IR) injury has not been reported. Here, we aimed to investigate the role of Slit2 and the underlying mechanisms in cardiac IR injury. Methods Langendorff-perfused isolated hearts from Slit2-overexpressing (Slit2-Tg) mice and their background strain C57BL/6J mice were subjected to 20 min of global ischemia followed by 40 min of reperfusion. Left ventricular function of isolated hearts was monitored. Infarct size of post-IR hearts was determined by staining with 2,3,5-triphenyltetrazolium chloride (TTC) and histological changes of cardiac tissues and cells were determined with hematoxylin-eosin (HE) staining and transmission electron microscopy. Transcriptomic analysis was used to predict the biological processes and signaling pathways affected by Slit2 overexpression in the post-IR myocardium. Pro-Q staining and Western blotting was used to assess the phosphorylation levels of cardiac myofilaments and expression levels of myofilament-associated protein kinase and phosphatases. Results Slit2 overexpression increased post-IR left ventricular developed pressure (LVDP) by 35% and reduced infarct size by 53%, along with decreased myofibrillar disruption, mitochondrial swelling, and mitochondrial cristae dissolution. Slit2 overexpression significantly changed post-IR gene expression profiles. Functional products of these genes include regulation of cation transmembrane transport, cation homeostasis, collagen fibril organization, and regulation of heart rate. And post-IR myocardial KEGG pathways upregulated by Slit2 overexpression include ECM-receptor interaction, PI3K-Akt signaling pathway, and adrenergic signaling. Slit2 overexpression impacted myofilament phosphorylation together with myofilament-associated protein kinase C (PKC) isoforms and protein phosphatases (PPs). IR in C57BL/6J hearts upregulated phosphorylation of cardiac troponin-I (cTnI), which was suppressed by Slit2 overexpression. Myofilament‐associated PKCε, PKCδ, and PP2A were significantly increased post‐IR in C57BL/6J hearts, but in Slit2‐Tg hearts, myofilament‐associated PKCε and PP2A were increased and PKCδ was suppressed. Conclusions Our results demonstrate that Slit2 overexpression protects cardiac function and reduces IR injury, which is associated with Slit2‐induced gene profile shifts. The suppression of MyBP‐C and troponin‐I phosphorylation, and myofilament‐associated PKCδ levels induced by Slit2 overexpression could contribute to the cardioprotection of Slit2 in post-IR myocardium.
Project description:Cardiac resident MerTK+ macrophages exert multiple protective roles post-ischemic injury, however, the mechanisms regulating their fate are not fully understood. Here we show that GAS6-inducible transcription factor ATF3 prevents apoptosis of MerTK+ macrophages after ischemia-reperfusion (IR) injury, by repressing the transcription of multiple genes involved in type I interferon expression (Ifih1 and Infb1) and apoptosis (Apaf1). Mice lacking ATF3 in cardiac macrophages or myeloid cells showed excessive loss of MerTK+ cardiac macrophages, poor angiogenesis, and worse heart dysfunction post-IR, which were rescued by the transfer of MerTK+ cardiac macrophages. GAS6 administration improved cardiac repair in an ATF3-dependent manner. Finally, we showed a negative association of GAS6 and ATF3 expression with the risk of major adverse cardiac events in patients with ischemic heart disease. These results indicate that the GAS6-ATF3 axis has a protective role against IR injury by regulating MerTK+ cardiac macrophage survival/proliferation.
Project description:Lysosomes are at the epicenter of cellular processes critical for inflammasome activation in macrophages, including autophagy and lipid metabolism. Inflammasome activation and IL1-beta secretion are implicated in atherogenesis, ischemic cardiac injury and resultant heart failure; however, little is known about the role of macrophage lysosome function in regulating these processes. We hypothesized that macrophages exhibit lysosome dysfunction in heart failure due to ischemic injury, and that augmentation of macrophage lysosomal biogenesis via macrophage-specific overexpression of transcription factor EB (mf-TFEB) would attenuate ischemic remodeling by modulating macrophage inflammatory responses. In both mice subject to ischemia-reperfusion injury, and human heart tissue from patients with ischemic cardiomyopathy, we find evidence of lysosome insufficiency and autophagic impairment, respectively. Mf-TFEB overexpression significantly attenuated post-IR adverse left ventricular remodeling at 4 weeks without affecting scar size. Mf-TFEB overexpression reduced the relative amounts of pro-inflammatory macrophage populations in the myocardium. RNA sequencing of flow-sorted cardiac macrophages post-IR confirmed that TFEB stimulated a lysosomal transcriptional program in macrophages, and upregulated key targets involved in lysosomal lipid metabolism, which we show are critical for inflammasome suppression. Both TFEB-dependent inflammasome suppression and effects on post-IR remodeling were independent of autophagy. Our findings suggest that TFEB reprograms macrophage lysosomal lipid metabolism to attenuate inflammasome activity and protect against post-ischemic cardiac remodeling and simultaneously shift our understanding of how autophagy and lipid metabolism impact acute inflammation.
Project description:Cardiac resident MerTK+ macrophages exert multiple protective roles post-ischemic injury. To determine the potential reason for the protective role of MerTK+ cardiac macrophages, microarray was performed to identify gene expression profiles on isolated Trem2+, MHCII+, Lyve1+, and MerTK- macrophages from the heart tissue of WT mice post-IR. We investigated the potential reason for the protective role of MerTK+ cardiac macrophages in myocardial Ischemia reperfusion injuryby microarray.
Project description:Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abrupt increases in intracellular Ca2+ during myocardial reperfusion cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Cardiac IR is accompanied by dynamic changes in expression of microRNAs (miRNAs), which inhibit specific mRNA targets. miR-214 is up-regulated during ischemic injury and heart failure in mice and humans, but its potential role in these processes is unknown. We show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The microarray contains 6 samples, each containing cDNA pooled from 3 mice per group. There are no replicates. The array was designed to make 3 different pairwise comparisons between the following: P14 WT and miR-214 KO hearts; adult WT and miR-214 KO skeletal muscle; adult WT and miR-214 KO hearts
Project description:Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abrupt increases in intracellular Ca2+ during myocardial reperfusion cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Cardiac IR is accompanied by dynamic changes in expression of microRNAs (miRNAs), which inhibit specific mRNA targets. miR-214 is up-regulated during ischemic injury and heart failure in mice and humans, but its potential role in these processes is unknown. We show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury.
Project description:The mammalian heart possesses a poor ability to regenerate after acute ischemic cardiac injury and lost cardiac muscle is replaced by scar tissue. Multiple clinical studies demonstrate that the size of scar tissue following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors that regulate the size of scar after ischemic cardiac injury. In this report, we demonstrate that collagen V, a fibrillar collagen and a minor constituent of heart scars regulates the size of heart scars after ischemic cardiac injury. Depletion of collagen V in heart scars in two independent animal models led to a significant and paradoxical increase in post infarction scar tissue size with worsening of heart function. A systems genetics approach analyzing genes versus traits across 100 in-bred strains of mice independently demonstrated that collagen V is a critical driver of post injury heart function. We show that collagen V deficiency alters the ultra-structure and mechanical properties of scar tissue that make it more vulnerable to expansion. There is altered reciprocal feedback between matrix and cells that induce expression of specific mechanosensitive integrins which drive fibroblast activation and increased ECM gene expression. Scar size increases. Administration of cilengitide, an inhibitor of specific integrins, completely rescues the phenotype of increased post injury scarring, myofibroblast formation and cardiac dysfunction in collagen V deficient mice. These observations demonstrate that collagen V, a structural constituent of heart scar tissue regulates scar size in an integrin dependent manner.
Project description:The mammalian heart possesses a poor ability to regenerate after acute ischemic cardiac injury and lost cardiac muscle is replaced by scar tissue. Multiple clinical studies demonstrate that the size of scar tissue following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors that regulate the size of scar after ischemic cardiac injury. In this report, we demonstrate that collagen V, a fibrillar collagen and a minor constituent of heart scars regulates the size of heart scars after ischemic cardiac injury. Depletion of collagen V in heart scars in two independent animal models led to a significant and paradoxical increase in post infarction scar tissue size with worsening of heart function. A systems genetics approach analyzing genes versus traits across 100 in-bred strains of mice independently demonstrated that collagen V is a critical driver of post injury heart function. We show that collagen V deficiency alters the ultra-structure and mechanical properties of scar tissue that make it more vulnerable to expansion. There is altered reciprocal feedback between matrix and cells that induce expression of specific mechanosensitive integrins which drive fibroblast activation and increased ECM gene expression. Scar size increases. Administration of cilengitide, an inhibitor of specific integrins, completely rescues the phenotype of increased post injury scarring, myofibroblast formation and cardiac dysfunction in collagen V deficient mice. These observations demonstrate that collagen V, a structural constituent of heart scar tissue regulates scar size in an integrin dependent manner.