Lineage-restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity
Ontology highlight
ABSTRACT: Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. Yet how metabolism is implicated in specific phenotypes, and whether lineage-restricted mechanisms control key metabolic vulnerabilities remains poorly understood. In melanoma, down-regulation of the lineage addiction oncogene Microphthalmia-associated Transcription Factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, though how MITF promotes proliferation and suppresses invasion is poorly defined. Here we show that MITF is a lineage restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD), and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signalling, and an ATF4-mediated feedback-loop that maintains dedifferentiation. Our results reveal that MITF is a lineagespecific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype-switching, and highlight that cell phenotype dictates response to drugs targeting lipid metabolism.
ORGANISM(S): Homo sapiens
PROVIDER: GSE137390 | GEO | 2019/10/16
REPOSITORIES: GEO
ACCESS DATA