Epigenetic rewiring towards mesenchymal-epithelial transformation in ovarian cancer-associated mesenchymal stem cells drives metastasis
Ontology highlight
ABSTRACT: Ovarian cancer develops early intra-peritoneal metastasis establishing a pro-tumorigenic tumor microenvironment (TME) through reprogramming normal mesenchymal stem cells into carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are the stromal stem cell of the TME, supporting cancer growth, increasing desmoplasia, angiogenesis and chemotherapy resistance. We demonstrate epigenetic rewiring drives CA-MSC formation via enhancer-enriched DNA hypermethylation, altered chromatin accessibility and differential histone modifications inducing a partial mesenchymal to epithelial transition (MET) increasing tumor cell adhesion. Direct CA-MSC:tumor cell interactions, confirmed in patient ascites, facilitate ovarian cancer metastasis through co-migration. WT1, a developmental mediator of MET, and EZH2, mediate CA-MSC epigenetic reprogramming. WT1 overexpression induces CA-MSC conversion while WT1 knock-down, in combination with EZH2 inhibition, blocks CA-MSC formation. EZH2 inhibition subsequently decreases intra-abdominal metastasis.
ORGANISM(S): Homo sapiens
PROVIDER: GSE138072 | GEO | 2020/12/22
REPOSITORIES: GEO
ACCESS DATA