Stringent-controlled stress adaption of Pseudomonas aeruginosa
Ontology highlight
ABSTRACT: Surfing motility is a complex adaptation that is different from swarming motility and requires the stringent stress response in Pseudomonas aeruginosa LESB58 Cystic fibrosis (CF) is a genetic disease that affects mucin-producing body organs such as the lungs. Characteristic of CF is the production of thick and sticky mucus that can lead to progressive airway obstruction. The glycoprotein mucin is the major macromolecular component of mucus. Recently, we identified that the presence of mucin induced a rapid surface adaptation termed surfing motility in motile bacteria. P. aeruginosa, the main colonizing pathogen in CF employs several stress coping mechanisms to survive the highly viscous environment of the CF lung. Here, RNA-Seq was used to study the stringent stress response in the hypervirulent CF isolate LESB58 (Liverpool Epidemic Strain) via transcriptional profiling. As the stringent response is regulated by relA and spoT, we created a double knockout of these genes in LESB58 to study the impact of these stress regulators on surfing motility using RNA-Seq.
ORGANISM(S): Pseudomonas aeruginosa LESB58
PROVIDER: GSE138716 | GEO | 2020/03/11
REPOSITORIES: GEO
ACCESS DATA