Project description:Mouse cortex or cerebellum samples from E18.5 or P28 Nova2-cTag mouse crossed with a series of Cre driver mice were subjected to Nova2 cTag-CLIP to generate functional NOVA2-RNA maps from single neuronal populations in the mouse brain.
Project description:We sequenced RNA from adult mouse spinal cord and from cell sorted Nova2-cKO neurons (crossed with Emx1-Cre, Gad2-Cre, Pcp2-Cre driver mice) and from Nova2.Ptbp2-dKO to compare gene expression level, and alternative splicing events.
Project description:To assess the requirement of Nova2 for alternative processing of RNA in mouse brain. Protein-RNA interactions play critical roles in all aspects of gene expression. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova2 revealed extremely reproducible RNA binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3â UTRs, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo. Keywords: Comparative analysis Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE17374: Wild type vs. Nova2 KO mouse: Exon array data GSE17376: Wild type vs. Nova2 KO mouse: Exon junction array data
Project description:To assess the requirement of Nova2 for alternative processing of RNA in the developping brain. Neuronal migration leads to a highly organized laminar structure in the mammalian brain and its mis-regulation causes lissencephaly, behavioral and cognitive defects. Reelin signaling, mediated in part by a key adaptor, disabled-1 (Dab1), plays a critical but incompletely understood role in this process. We found that the neuron-specific RNA binding protein Nova2 regulates neuronal migration in late-generated cortical and Purkinje neurons. An unbiased HITS-CLIP and exon junction array search for Nova-dependent RNAs at E14.5 focused on components of the reelin pathway revealed only one candidate—an alternatively spliced isoform of Dab1 (Dab1.7bc). In utero electroporation demonstrated that Dab1.7bc was sufficient to induce neuronal migration defects in wild-type mice and exacerbate defects when Dab1 levels were reduced, while Dab1 overexpression mitigates defects in Nova2-null mice. Thus Nova2 regulates an RNA switch controlling the ability of Dab1 to mediate neuronal responsiveness to reelin signaling and neuronal migration, suggesting new links between splicing regulation, brain disease and development. Keywords: Comparative analysis RNA from the cortex of 3 wild type and 3 Nova2 KO E14.5 cortex. One array per biological replicate.
Project description:Gene expression profiling reveals a potential role of Luteolin in human neuronal stem cells (hNSCs) differentiation . hNSCs purchased from Gibco were treated with 1 μM verbenalin for 24 hours. Microarray gene expression profiling was conducted for biological replicates of hNSCs cultured in differentiation cell culture medium supplemented with Luteolin for 24 hours and untreated control cells cultured in differentiation cell cultured medium .
Project description:To assess the requirement of Nova2 for alternative processing of RNA in the developping brain. Neuronal migration leads to a highly organized laminar structure in the mammalian brain and its mis-regulation causes lissencephaly, behavioral and cognitive defects. Reelin signaling, mediated in part by a key adaptor, disabled-1 (Dab1), plays a critical but incompletely understood role in this process. We found that the neuron-specific RNA binding protein Nova2 regulates neuronal migration in late-generated cortical and Purkinje neurons. An unbiased HITS-CLIP and exon junction array search for Nova-dependent RNAs at E14.5 focused on components of the reelin pathway revealed only one candidate—an alternatively spliced isoform of Dab1 (Dab1.7bc). In utero electroporation demonstrated that Dab1.7bc was sufficient to induce neuronal migration defects in wild-type mice and exacerbate defects when Dab1 levels were reduced, while Dab1 overexpression mitigates defects in Nova2-null mice. Thus Nova2 regulates an RNA switch controlling the ability of Dab1 to mediate neuronal responsiveness to reelin signaling and neuronal migration, suggesting new links between splicing regulation, brain disease and development. Keywords: Comparative analysis
Project description:Angiogenesis is crucial for cancer progression and anti-angiogenic drugs are in use for its treatment. However, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is crucial to identify better biomarkers and novel therapeutic targets. Alternative Splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, its contribution to tumor vasculature development is poorly known. NOVA2 is an important AS regulator of angiogenesis and vascular development and it is up-regulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessels aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), with its expression correlating with poor overall survival of the GC patients. We also found that the AS of the newly identified NOVA2 target RapGEF6 is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might represent a potential source of biomarkers and therapeutics for novel anti-angiogenic GC treatments.