Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids
Ontology highlight
ABSTRACT: Brain organoids are promising tools for disease modelling and drug development. For proper neuronal network formation excitatory and inhibitory neurons as well as glia need to co-develop. Here we report the directed differentiation and self-organization of induced pluripotent stem cells in a collagen hydrogel towards a highly interconnected neuronal network in a macroscale tissue format. Bioengineered Neuronal Organoids (BENOs) comprise interconnected excitatory and inhibitory neurons as well as supportive astrocytes and oligodendrocytes. Giant depolarizing potential (GDP)-like events observed within 20-40 days of BENO culture mimic early network activity of the fetal brain. The switch from excitatory to inhibitory GABA activity, and reduced GDPs at >40 day BENO cultures indicate progressive neuronal network maturation. BENOs demonstrate expedited complex network burst development after two months of culture and provide the first evidence for long-term potentiation and plasticity in brain organoids. BENOs exhibit structural and functional properties similar to the fetal brain and thus may be explored as a model to study the development of neuronal plasticity.
ORGANISM(S): Homo sapiens
PROVIDER: GSE139101 | GEO | 2020/07/02
REPOSITORIES: GEO
ACCESS DATA