Dual recognition of H3K4me3 and DNA by the ISWI component ARID5 regulates floral phase transition in Arabidopsis [ChIP-Seq]
Ontology highlight
ABSTRACT: Chromatin remodeling and histone modifications are important for development and floral phase transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of ISWI chromatin remodeling complexes in Arabidopsis thaliana. We found that ARID5, a subunit of a plant-specific ISWI complex, can regulate development and floral phase transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral phase transition
Project description:Chromatin remodeling and histone modifications are important for development and floral phase transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of ISWI chromatin remodeling complexes in Arabidopsis thaliana. We found that ARID5, a subunit of a plant-specific ISWI complex, can regulate development and floral phase transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral phase transition
Project description:The ability of cells to perceive and translate versatile cues into differential chromatin and transcriptional states is critical for many biological processes1-4. In plants, timely transition to a flowering state is crucial for successful reproduction5-7. EARLY BOLTING IN SHORT DAY (EBS) is a negative transcriptional regulator that prevents premature flowering in Arabidopsis8,9. Here, we revealed that bivalent bromo-adjacent homology (BAH)-plant homeodomain (PHD) reader modules of EBS bind H3K27me3 and H3K4me3, respectively. A subset of EBS-associated genes was co-enriched with H3K4me3, H3K27me3, and the Polycomb repressor complex 2 (PRC2). Interestingly, EBS adopts an auto-inhibition mode to mediate its binding preference switch between H3K27me3 and H3K4me3. This binding balance is critical because disruption of either EBS-H3K27me3 or EBS-H3K4me3 interaction induces EBS-mediated early floral transition. This study identifies a single bivalent chromatin reader capable of recognizing two antagonistic histone marks and reveals a distinct mechanism of interplay between active and repressive chromatin states.The ability of cells to perceive and translate versatile cues into differential chromatin and transcriptional states is critical for many biological processes1-4. In plants, timely transition to a flowering state is crucial for successful reproduction5-7. EARLY BOLTING IN SHORT DAY (EBS) is a negative transcriptional regulator that prevents premature flowering in Arabidopsis8,9. Here, we revealed that bivalent bromo-adjacent homology (BAH)-plant homeodomain (PHD) reader modules of EBS bind H3K27me3 and H3K4me3, respectively. A subset of EBS-associated genes was co-enriched with H3K4me3, H3K27me3, and the Polycomb repressor complex 2 (PRC2). Interestingly, EBS adopts an auto-inhibition mode to mediate its binding preference switch between H3K27me3 and H3K4me3. This binding balance is critical because disruption of either EBS-H3K27me3 or EBS-H3K4me3 interaction induces EBS-mediated early floral transition. This study identifies a single bivalent chromatin reader capable of recognizing two antagonistic histone marks and reveals a distinct mechanism of interplay between active and repressive chromatin states.v
Project description:we identified the forkhead-associated domain 2 (FHA2) as a plant-specific subunit of an ISWI chromatin-remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. A reduced-fertility phenotype was observed in both the fha2 and rlt1/2 mutant plants and the phenotype was ascribed to overgrowth of the pistil during the floral development. However, the early-flowering phenotype of the rlt1/2 mutant was not shared by the fha2 mutant. Consistently, our RNA-seq analysis indicated that the fha2 mutant affects a subset of rlt1/2-regulated genes but not genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex to exclusively regulate the pistil growth during the floral development.
Project description:Histone modifications regulate chromatin-dependent processes, yet the mechanisms by which they contribute to specific outcomes remain unclear. H3K4me3 is a prominent histone mark that is associated with active genes and promotes transcription through interactions with effector proteins that include initiation factor TFIID. We demonstrate that H3K4me3-TAF3 interactions direct global TFIID recruitment to active genes, some of which are p53 targets. Further analyses show that (i) H3K4me3 enhances p53-dependent transcription by stimulating preinitiation complex (PIC) formation; (ii) H3K4me3, through TAF3 interactions, can act either independently or cooperatively with the TATA box to direct PIC formation and transcription; and (iii) H3K4me3-TAF3/TFIID interactions regulate gene-selective functions of p53 in response to genotoxic stress. Our findings indicate a mechanism by which H3K4me3 directs PIC assembly for the rapid induction of specific p53 target genes Examination of genome wide binding sites of TAF3 full length protein vs TAF3 PHD domain alone (Full vs PHD), with or without M880A mutation (WT vs mut) in mouse MEF cells using HITseq method (PNAS 2010, 107:3135-3140, PMID: 20133638)
Project description:The ASH1L lysine methyltransferase plays a critical role in development and is frequently dysregulated in cancer and neurodevelopmental diseases. ASH1L catalyzes mono- and dimethylation of histone H3K36 and contains a set of uncharacterized domains. Here, we report the structure-function relationships of the C-terminal cassette of ASH1L encompassing a bromodomain (BD), a PHD finger and a bromo-associated homology (BAH) domain and show that ASH1L co-localizes with H3K4me3 but not with H3K36me2 at transcription start sites genome-wide and is involved in embryonic stem cell differentiation and transcriptional regulation of differentiation marker genes. Our crystal and NMR structural data provide mechanistic details for the recognition of H3K4me3 by PHD, the DNA binding activities of BD and BAH, and crosstalk among these domains. We show that the PHD-H3K4me3 interaction is inhibitory to the catalytic activity of ASH1L and that the DNA binding function of BAH is necessary for ASH1L engagement with the nucleosome. Our findings suggest a mechanism by which the C-terminus of ASH1L associates with chromatin and provide molecular and structural insights that are essential in therapeutic targeting of ASH1L.
Project description:SVP is a key MADS-box transcription factor for Arabidopsis development since it acts both during vegetative and reproductive phases where it plays different roles probably by interacting with different partners to regulate specific sets of target genes. In fact, whereas SVP functions as a repressor of floral transition during the vegetative phase, it works as floral meristem gene during reproductive phase. We studied the behavior of SVP during two distinct developmental phases: the vegetative and reproductive phase. The aim of these studies is to identify subsets of genes that are directly bound by SVP by means of ChIP sequencing (Illumina Solexa Sequencing) approach during the two distinct phases of development.
Project description:SVP is a key MADS-box transcription factor for Arabidopsis development since it acts both during vegetative and reproductive phases where it plays different roles probably by interacting with different partners to regulate specific sets of target genes. In fact, whereas SVP functions as a repressor of floral transition during the vegetative phase, it works as floral meristem gene during reproductive phase. We studied the behavior of SVP during two distinct developmental phases: the vegetative and reproductive phase. The aim of these studies is to identify subsets of genes that are regulated by SVP by means of Arabidopsis Tiling 1.0R Arrays (Affymetrix) during the two distinct phases of development.