GLI1+ mesenchymal stromal cells modulate epithelial metaplasia in lung fibrosis
Ontology highlight
ABSTRACT: A single-cell transcriptional analysis was performed on GLI1+ stromal cells from the adult murine lung during homeostasis and after fibrotic injury. The goal is to understand the role of GLI1+ stromal cells in lung fibrosis and repair. Whole adult murine lung tissue from two samples were separately dissociated to single cells and subjected to fluorescence activated cell sorting (FACS) to select all live GLI1+ cells. One sample was treated with bleomycin to induce fibrosis and the other was treated with saline as a control. The single cell RNA-sequencing library was generated separately for the bleomycin and saline-treated samples. Cells were sequenced at a depth of ~70,000 reads/cell. We captured approximately 17,700 cells with a median of 2,400 genes detected per cell utilizing a droplet-based barcoding approach to capture single cells for RNA sequencing. After bleomycin-induced fibrosis, we identified a novel "myofibroblast" subset of GLI1 cells that contribute to injury and repair. Injured GLI1 cells also reveal dysregulation in key developmental pathways, including BMP signaling, that contribute to metaplastic repair after fibrotic injury.
ORGANISM(S): Mus musculus
PROVIDER: GSE140032 | GEO | 2020/08/17
REPOSITORIES: GEO
ACCESS DATA