Expression of Heterologous OsDHAR Gene Improves Glutathione (GSH)-Dependent Antioxidant System and Maintenance of Cellular Redox Status in Synechococcus elongatus PCC 7942
Ontology highlight
ABSTRACT: An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the ascorbate-glutathione cycle, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, a transgenic microalgae (TA) strain was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the Synechococcus elongatus PCC 7942 strain of cyanobacteria to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type (WT) strain. Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio compared to ascorbic acid (AsA)/dehydroascorbate (DHA) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress.
Project description:In the unicellular cyanobacterium, Synechococcus elongatus PCC 7942, essentially all promoter activities are under the control of the circadian clock in continuous light (LL) conditions. Here, we employed high-density oligonucleotide arrays to investigate comprehensive profiles of genome-wide Synechococcus gene expression in kaiA-overexpressor (Ptrc::[GTG]kaiA) strains under LL. KaiC has been proposed to globally activate gene expression, our analysis revealed that dawn expressing genes were downregulated by kaiA-overexpression, such that the clock was arrested at subjective dawn. IPTG-inducible kaiA-overexpressor (oxA) S. elongatus PCC 7942 strains were analyzed under continuous light (LL) using Affymetrix high-density oligonucleotide microarrays (GeneChip CustomExpress Arrays) representing predicted 2,515 protein-coding genes on the genome of Synechococcus elongatus PCC 6301, which can be used also to the almost homologous strain, S. elongatus PCC 7942: a single experiment in oxA under LL in the presence or absence of an inducer, IPTG, from hour 24 to 48 in LL timecourse data (24~48 hours under continuous light) from Synechococcus elongatus PCC 7942 (inducible kaiA-overexpressor) strains
Project description:In the unicellular cyanobacterium, Synechococcus elongatus PCC 7942, most genes show rhythmic expression controlled by the Kai-based clock under continuous light conditions (LL). We found that rpoD6-null mutants impaired expression of clock-controlled genes peaking at hours 8-10 in LL, while sasA-null or rpaA-null mutants each arrested the expression profiles at subjective dawn. Time-course data (0-24 h) of wild type (WT), rpoD6-null, sasA-null and rpaA-null S. elongatus PCC 7942 strains analyzed under continuous light (LL) conditions after two 12h:12h light:dark (LD) cycles using Affymetrix high-density oligonucleotide microarrays (GeneChip CustomExpress Arrays) representing 2,515 predicted protein-coding genes on the genome of Synechococcus elongatus PCC 6301, which can be used also for the almost homologous strain, S. elongatus PCC 7942.
Project description:Previous molecular and mechanistic studies have identified several principles of prokaryotic transcription, but less is known about the global transcriptional architecture of bacterial genomes. Here we perform a comprehensive study of a cyanobacterial transcriptome, that of Synechococcus elongatus PCC 7942, generated by combining three high-resolution data sets: RNA sequencing, tiling expression microarrays, and RNA polymerase chromatin immunoprecipitation (ChIP) sequencing. We report absolute transcript levels, operon identification, and high-resolution mapping of 5' and 3' ends of transcripts. We identify several interesting features at promoters, within transcripts and in terminators relating to transcription initiation, elongation, and termination. Furthermore, we identify many putative non-coding transcripts. We provide a global analysis of a cyanobacterial transcriptome. Our results uncover insights that reinforce and extend the current views of bacterial transcription. RNA Sequencing of the cyanobacterium Synechococcus elongatus PCC 7942 RNA polymerase ChIP Sequencing of the cyanobacterium Synechococcus elongatus PCC 7942 Tiling Microarray of the cyanobacterium Synechococcus elongatus PCC 7942
Project description:In the unicellular cyanobacterium, Synechococcus elongatus PCC 7942, most of genes are downregulated in the dark, while 10% of genes are upregulated. Here, we employed high-density oligonucleotide arrays to explore comprehensive profiles of genome-wide Synechococcus gene expression in wild type and kaiABC-null strains under continuous dark (DD) conditions. We found that expression profile of a subset of genes on the genome in DD was dramatically affected by kaiABC-nullification, and the magnitude of dark-induction was dependent on time when cells were transferred from light to DD Keywords: timecourse data (0-12 h) under continuous darkness after dark:light cycles from Synechococcus elongatus PCC 7942 wild type and kaiABC-null strains Wild type (WT) and kaiABC-null (DkaiABC) S. elongatus PCC 7942 strains were analyzed under continuous dark (DD) conditions after two 12h:12h light:dark (LD) cycles using Affymetrix high-density oligonucleotide microarrays (GeneChip CustomExpress Arrays) representing predicted 2,515 protein-coding genes on the genome of Synechococcus elongatus PCC 6301, which can be used also to the almost homologous strain, S. elongatus PCC 7942: Two independent experiments in WT and Dkai strains under DD (hours 0, 0.5, 1, 2, 4, 8 and 12).
Project description:Expression of Heterologous OsDHAR Gene Improves Glutathione (GSH)-Dependent Antioxidant System and Maintenance of Cellular Redox Status in Synechococcus elongatus PCC 7942
Project description:In the unicellular cyanobacterium, Synechococcus elongatus PCC 7942, essentially all promoter activities are under the control of the circadian clock in continuous light (LL) conditions. Here, we employed high-density oligonucleotide arrays to investigate comprehensive profiles of genome-wide Synechococcus gene expression in the kaiCEE mutant strains in which the KaiC phosphorylation cycling is abolished under LL.. In the kaiCEE mutant strain more than 23% of transcripts significantly oscillated with a period of about 48 h. 409 cyclic genes were shared with the wild type strains. kaiCEE mutant strain was analyzed under continuous light (LL) using Affymetrix high-density oligonucleotide microarrays (GeneChip CustomExpress Arrays) representing predicted 2,515 protein-coding genes on the genome of Synechococcus elongatus PCC 6301, which can be used also to the almost homologous strain, S. elongatus PCC 7942: a single experiment in kaiCEE mutant under LL from hour 8 to 96 in LL timecourse data (8~96 hours under continuous light) from Synechococcus elongatus PCC 7942 (kaiCEE mutant) strains
Project description:In the unicellular cyanobacteriuIn the cyanobacterium, Synechococcus elongatus PCC 7942, most genes show rhythmic expression controlled by the Kai-based clock under continuous light conditions (LL). Overexpression of clpX led to a decrease in kaiBC promoter activity, disruption of circadian rhythm, and eventually cell death. We found that overexpression of clpX upregulated mRNA levels of ribosomal protein subunits, after which expression of other genes containing the clock genes was decreased. Wild type (WT) and inducible clpX-overexpressor (ox-clpX) S. elongatus PCC 7942 strains were analyzed under continuous light (LL) using Affymetrix high-density oligonucleotide microarrays (GeneChip CustomExpress Arrays) representing predicted 2,515 protein-coding genes on the genome of Synechococcus elongatus PCC 6301, which can be used also to the almost homologous strain, S. elongatus PCC 7942: WT at hours 16 in LL (IPTG-free): WT under LL 20 in LL (addition of 100 µM IPTG for 4 hours): ox-clpX cells at hours 16 in LL (IPTG-free): ox-clpX cells at hours 20 in LL (addition of 100 µM IPTG for 4 hours)
Project description:In the unicellular cyanobacterium, Synechococcus elongatus PCC 7942, essentially all promoter activities are under the control of the circadian clock in continuous light (LL) conditions. Here, we employed high-density oligonucleotide arrays to explore comprehensive profiles of genome-wide Synechococcus gene expression in wild type, kaiABC-null and kaiC-overexpressor strains under LL and continuous dark (DD) conditions. In the wild type strain more than 30% of transcripts significantly oscillated in a circadian fashion, peaking at subjective dawn and dusk. Such circadian control was nullified in kaiABC-null strains. Although KaiC has been proposed to globally repress gene expression, our analysis revealed that dawn expressing genes were upregulated by kaiC-overexpression, such that the clock was arrested at subjective dawn. Transfer of cells to continuous dark (DD) conditions from LL immediately suppressed expression of most of genes, while the clock keeps time even in the absence of transcriptional feedback. Thus, the Synechococcus genome seems primarily regulated by the light/dark cycles and dramatically modified by the protein-based circadian oscillator. Keywords: timecourse data (~48 hours under continuous light or darkness) from Synechococcus elongatus PCC 7942 (wild type, kaiABC-null, and inducible kaiC-overexpressor) strains Wild type (WT), kaiABC-null (Dkai), and inducible kaiC-overexpressor (oxC) S. elongatus PCC 7942 strains were analyzed under continuous light (LL), continuous dark (DD) using Affymetrix high-density oligonucleotide microarrays (GeneChip CustomExpress Arrays) representing predicted 2,515 protein-coding genes on the genome of Synechococcus elongatus PCC 6301, which can be used also to the almost homologous strain, S. elongatus PCC 7942: Two independent experiments in WT under LL (hours 0 to 52) and DD (hours 0 to 48); Two independent experiments in Dkai under LL (hours 0 to 48); Two independent experiments in oxC under LL in the presence or absence of an inducer, IPTG, from hour 25 to 33 in LL; a single experiment in WT under DD in the presence of an transcriptional inhibitor, rifampicin.
Project description:The goals of this study are to compare hydrogen peroxide (H2O2) stress tolerance through gene expression of wild type (WT) and OsTPX-expressing Synechoccous elongatus PCC 7942 (OT) under the normal and stress condition.
Project description:The essential thiol antioxidant, glutathione (GSH) is recruited into the nucleus of mammalian cells early in cell proliferation, suggesting a key role of the nuclear thiol pool in cell cycle regulation. However, the functions of nuclear GSH (GSHn) and its integration with the cytoplasmic GSH (GSHc) pools in whole cell redox homeostasis and signaling are unknown. Here we show that GSH is recruited into the nucleus early in cell proliferation in Arabidopsis thaliana, confirming the requirement for localization of GSH in the nucleus as a universal feature of cell cycle regulation. GSH accumulation in the nucleus was triggered by treatments that synchronize cells at G1/S as identified by flow cytometry and marker transcripts. Significant decreases in transcripts associated with oxidative signaling and stress tolerance occurred when GSH was localized in the nucleus. Increases in GSH1 and GSH2 transcripts accompanied the large increase in total cellular GSH observed during cell proliferation, but only GSH2 was differentially expressed in cells with high GSHn relative to those with an even intracellular distribution of GSH. Of the 7 Bcl-2 associated (BAG) genes in A. thaliana, only the nuclear-localized BAG 6 was differentially expressed in cells with high GSHn compared to GSHc. We conclude that GSHn is associated with decreased oxidative signaling and stress responses and that whole cell redox homeostasis is restored as the cell cycle progresses by enhanced GSH synthesis and accumulation in the cytoplasm. Arabidopsis cells were harvested at points during cell proliferation where GSH was localized either in the nucleus (GSHn) or where GSH was distributed throughout the cytoplasm (GSHc) for RNA extraction and hybridization on Affymetrix microarrays. We selected three stages where the GSH was into the nucleus and three stages where the GSH was distributed throughout the cells.