Genomics

Dataset Information

0

Cross-species analysis of melanoma enhancer logic using deep learning


ABSTRACT: Here, we combine comparative regulatory genomics with machine learning to investigate enhancer logic in melanoma. Through epigenomics profiling of 26 melanoma cell lines across six species, we examine the conservation of the two main melanoma states and underlying master regulators. By training a deep neural network on topic models derived from the human lines, we were able to classify not only human melanoma enhancers, but also regulatory regions in the other species. The deep learning model revealed important genomic features (i.e. TF binding motifs) for the different melanoma states, how they co-occur within melanoma enhancers, and where they are placed with respect to the central enhancer nucleosome. This in-depth analysis of the melanoma enhancer code allowed us to propose a mechanistic model of TF binding in MEL melanoma enhancers. Finally, by exploiting the deep layers of our model, we are able to identify causal mutations for melanoma enhancer loss and gain through evolution, not only affecting enhancer accessibility but also activity.

ORGANISM(S): Danio rerio Mus musculus Sus scrofa domesticus Equus caballus Canis lupus familiaris Homo sapiens

PROVIDER: GSE142238 | GEO | 2020/04/22

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

| PRJNA596273 | ENA
2023-11-19 | GSE240003 | GEO
2021-07-27 | GSE180879 | GEO
2022-02-24 | GSE183937 | GEO
2022-02-24 | GSE183936 | GEO
2022-02-24 | GSE183938 | GEO
2022-02-24 | GSE183939 | GEO
2021-03-03 | GSE159965 | GEO
2019-08-08 | PXD011359 | Pride
2021-10-18 | GSE148368 | GEO