Transcriptomics

Dataset Information

0

Cell type prioritization in single-cell data


ABSTRACT: We present a machine-learning method to prioritize the cell types most responsive to biological perturbations within high-dimensional single-cell data. We validate our method, Augur (https://github.com/neurorestore/Augur), on a compendium of single-cell RNA-seq, chromatin accessibility, and imaging transcriptomics datasets. We apply Augur to expose the neural circuits that enable walking after paralysis in response to spinal cord neurostimulation.

ORGANISM(S): Mus musculus

PROVIDER: GSE142245 | GEO | 2020/06/05

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

| PRJNA764235 | ENA
2022-10-10 | GSE213699 | GEO
| PRJNA764238 | ENA
| PRJNA764239 | ENA
2023-10-12 | GSE232346 | GEO
2021-02-20 | GSE151112 | GEO
2022-06-20 | GSE184370 | GEO
2022-06-20 | GSE184369 | GEO
2021-01-11 | GSE147113 | GEO
2019-09-30 | GSE121708 | GEO