Transcriptome profiling of tumors from Kenyan triple negative breast cancer (TNBC) patients.
Ontology highlight
ABSTRACT: Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of Kenyan TNBC patients and identify potential biomarkers specific to Kenyan population. The transcriptome sequencing of tumors from Kenyan TNBC patients and comparisons with African American and Caucasian TNBC transcriptomes revealed several interesting targets and dysregulated pathways.
Project description:Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of African American and Caucasian TNBC patients and identify race specific biomarkers.
Project description:Triple negative breast cancer (TNBC) is an aggressive and clinically challenging subtype of breast cancer. TNBC disporportionately affects African-American (AA) women, but the biological basis of this disparity is not understood. To gain a better understanding of TNBC, particularly in AA patients, we applied spatial transcriptomics to thoroughly characterize gene expression and tissue architecture in TNBC. Our cohort consisted of 22 patients, 15 of whom were AA, and 7 who were Caucasian. We obtained 2 sections from each patient's tumor (except for patient 19) for a total of 43 samples.
Project description:Triple-Negative Breast Cancer (TNBC) has profound unmet medical need globally for its devastating clinical outcome associated with rapid metastasis and lack of targeted therapies. Recently, lipid metabolic reprogramming especially fatty acid oxidation (FAO) has emerged as a major driver of breast cancer metastasis. Analyzing the expression of major FAO regulatory genes in breast cancer, we found selective overexpression of acyl-CoA synthetase 4 (ACSL4) in TNBC, which is primarily attributed by the absence of progesterone receptor (PR). Loss of ACSL4 function, by genetic ablation or pharmacological inhibition significantly reduces metastatic potential of TNBC. Global transcriptome analysis reveals that ACSL4 activity positively influences the gene expression related to TNBC migration and invasion. Mechanistically, ACSL4 modulates FAO and intracellular acetyl-CoA levels, leading to hyper-acetylation of particularly H3K9ac and H3K27ac marks resulting in overexpression of SNAIL during the course of TNBC metastatic spread to lymph node and lung. Further, human TNBC metastasis exhibits positive correlation among ACSL4, H3K9ac, H3K27ac, and SNAIL expression. Altogether, our findings provide new molecular insights regarding the intricate interplay between metabolic alterations and epigenetic modifications, intertwined to orchestrate TNBC metastasis and posit a rational understanding for the development of ACSL4 inhibitors as a targeted therapy against TNBC.
Project description:Triple negative breast cancer (TNBC) is characterized by high proliferation, poor differentiation and a poor prognosis due to high rates of recurrence. Despite lower overall incidence African American (AA) patients suffer from higher breast cancer mortality in part due to the higher proportion of TNBC cases among AA patients compared to European Americans (EA). It was recently shown that the clinical heterogeneity of TNBC is reflected by distinct transcriptional programs with distinct drug response profiles in preclinical models. In this study, we used gene expression profiling and immunohistochemistry to eluicidate potential differences between TNBC tumors of EA and AA patients on a molecular level. WG-DASL experiment of 90 FFPE samples of ER, PR and HER2 (triple) negative breast cancer samples diagnosed between 1987 and 2007. Invasive disease was identified on H&E sections by the study pathologist and one to three 1.5 mm cores were punched from the top down in the designated tumor areas of each FFPE block. The cores were deparaffinized with xylene at 50°C for 3 minutes. RNA was extracted using the RecoverAll Total Nucleic Acid Isolation kit (Applied Biosystems) following the manufacturer's protocol. The isolated RNA was hybridized to Whole-Genome DASL (HumanRef8 V 3.0, Illumina) at the Yale Center for Genome Analysis. 90 primary tumor RNA samples from 90 patients were adequate for analysis and passed Quality control.
Project description:Analysis of the levels of circulating miRNAs from women with early stage breast cancer and matched healthy controls. miRNAs in plasma samples from 20 women with early stage breast cancer (10 Caucasian American and 10 African American) compared with 20 matched healthy controls (10 Caucasian American and 10 African American).
Project description:The expression levels of JMJD6 and its correlation with H2A.XY39ph differed in TNBC and non-TNBC cells. In addition, we have previously shown that H2A.XY39ph levels are positively correlated with tumor size, histological grade and advanced TNM stage in breast cancer. To analyze the role of JMJD6 in regulating the characteristics of different subtypes of breast cancer, the transcriptomes of TNBC cells (SUM159) and non-TNBC cells (HCC1569) that overexpressed JMJD6 were compared. We speculate that JMJD6 overexpression cause autophagy pathway activation in TNBC via enhancing ATG genes expression.
Project description:Recent meta-analyses suggest triple-negative breast cancer (TNBC) is a heterogenous disease. In this study we sought to define these TNBC subtypes and identify subtype-specific markers and targets. We identified and confirmed four distinct, stable TNBC subtypes: (1) Luminal-AR (LAR); 2) Mesenchymal (MES); 3) Basal-Like Immune-Suppressed (BLIS), and 4) Basal-Like Immune-Activated (BLIA). RNA profiling analysis was conducted on 198 TNBC tumors (ER-negativity defined as Allred Scale value â¤2) with >50% cellularity (discovery set: n=84; validation set: n=114)
Project description:Triple-negative breast cancer (TNBC) is characterized by lack of receptors, estrogen (ER), progesterone, and Her2, and standard receptor-targeted therapies are ineffective. FOXC1, a transcriptional factor aberrantly overexpressed in many cancers, drives growth, metastasis, and stem-cell-like properties in TNBC. However, the molecular function of FOXC1 is unknown, partly due to heterogeneity of TNBC. Here, we show that although FOXC1 regulates many cancer hallmarks in TNBC, its function is varied in different cell lines, highlighted by the differential response to CDK4/6 inhibitors upon FOXC1 loss. Despite this functional heterogeneity, we show that FOXC1 regulates key oncogenes and tumor suppressors and identify a set of core FOXC1 peaks conserved across TNBC cell lines. We identify the ER-associated and drug-targetable nuclear receptor NR2F2 as a cofactor of FOXC1. Finally, we show that core FOXC1 targets in TNBC are parallelly regulated by the pioneer factor FOXA1 and the nuclear receptor NR2F2 in ER+ breast cancer.