Role of CGRP on muscle mesenchymal stromal cells in mice
Ontology highlight
ABSTRACT: A distinct population of Foxp3+CD4+ regulatory T (Treg) cells promotes repair of acutely or chronically injured skeletal muscle. The accumulation of these cells depends critically on interleukin (IL)-33 produced by local mesenchymal stromal cells (mSCs). An intriguing physical association between muscle nerves, IL-33+ mSCs and Tregs has been reported, and begs a deeper exploration of this cell triumvirate. Here we evidence a striking proximity between IL-33+ muscle mSCs and both large-fiber nerve bundles and small-fiber sensory neurons; report that muscle mSCs transcribe an array of genes encoding neuropeptides, neuropeptide receptors and other nerve-related proteins; define muscle mSC subtypes that express both IL-33 and the receptor for the calcitonin-gene-related peptide (CGRP); and demonstrate that up- or down- tuning of CGRP signals augments or diminishes, respectively, IL-33 production by muscle mSCs and later accumulation of muscle Tregs. Indeed, a single injection of CGRP induced much of the genetic program elicited in mSCs early after acute skeletal muscle injury. These findings highlight neural/stromal/immune-cell cross-talk in tissue repair, suggesting future therapeutic approaches.
ORGANISM(S): Mus musculus
PROVIDER: GSE143424 | GEO | 2020/02/10
REPOSITORIES: GEO
ACCESS DATA