Testicular germ cell tumor susceptibility genes from the consomic 129.MOLF-Chr19 mouse strain
Ontology highlight
ABSTRACT: Chromosome substitution strains (CSS or consomic strains) are useful for mapping phenotypes to chromosomes. However, huge efforts are needed to identify the gene(s) responsible for the phenotype in the complex context of the chromosome. Here, we report the identification of candidate disease genes from a CSS using a combination of genetic and genomic approaches as well as by using knowledge about the germ cell tumor disease etiology. We utilized the CSS, 129.MOLF-Chr 19 chromosome substitution strain (or M19), in which males develop germ cell tumors of the testes at an extremely high rate. We are able to identify 3 protein-coding genes and 1 microRNA on chromosome 19 that have previously not been implicated to be testicular tumor susceptibility genes. Our findings suggest that changes in gene expression levels in the gonadal tissues of multiple genes from Chr 19 likely contribute to the high TGCT incidence of the M19 strain. Our data advances the use of CSS to identify disease susceptibility genes and demonstrates that the 129.MOLF-Chr 19 strain serves as a useful model to elucidate the genetics and biology of germ cell transformation and tumor development.
ORGANISM(S): Mus musculus
PROVIDER: GSE14354 | GEO | 2009/01/13
SECONDARY ACCESSION(S): PRJNA111385
REPOSITORIES: GEO
ACCESS DATA