Project description:The ChIP-seq experiments using GFP antibody on ZNF417/ZNF587-GFP overexpressing 293T cells revealed that ZNF417/ZNF587 preferred to bind a PBS-Lys-containing HERVs. Further motif calling analysis showed that both ZNF417 and ZNF587 bind to HERVK PBS-resembled motif.
Project description:PARP-1 and H1 ChIP-chips were performed to compare the genomic binding patterns of these chromatin binding factors Keywords: ChIP-chip
Project description:Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. While these proteins are almost certainly important for gene regulation they have been studied far less than the core histone proteins. Here we describe the genomic distributions and functional roles of two chromatin architectural proteins: histone H1 and the high mobility group protein HMGD1, in Drosophila S2 cells. Using ChIP-seq, biochemical and gene specific approaches, we find that HMGD1 binds to highly accessible regulatory chromatin and active promoters. In contrast, H1 is primarily associated with heterochromatic regions marked with repressive histone marks. However, the ratio of HMGD1 to H1 is better correlated with chromatin accessibility, gene expression and nucleosome spacing variation than either protein alone suggesting a competitive mechanism between these proteins. Indeed, we show that HMGD1 and H1 compensate each other’s absence by binding reciprocally to chromatin resulting in changes to nucleosome repeat length and distinct gene expression patterns. Collectively our data suggest that dynamic and mutually exclusive binding of H1 and HMGD1 to nucleosomes and linker sequences may control the fluid chromatin structure that is required for transcriptional regulation. This study thus provides a framework to further study the interplay between chromatin architectural proteins and epigenetics in gene regulation. ChIP-seq of HMGD1 and Histone H1 bound nucleosomes as well as MNase-seq of total nucleosome in Drosophila S2 cells
Project description:modENCODE_submission_3300 This submission comes from a modENCODE project of Gary Karpen. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: We aim to determine the locations of the major histone modifications across the Drosophila melanogaster genome. The modifications under study are involved in basic chromosomal functions such as DNA replication, gene expression, gene silencing, and inheritance. We will perform Chromatin ImmunoPrecipitation (ChIP) using genomic tiling arrays. We will initially assay localizations using chromatin from three cell lines and two embryonic stages, and will then extend the analysis of a subset of proteins to four additional animal tissues/stages. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-chip. BIOLOGICAL SOURCE: Cell Line: S2-DRSC; Tissue: embryo-derived cell-line; Developmental Stage: late embryonic stage; Sex: Male; NUMBER OF REPLICATES: 4; EXPERIMENTAL FACTORS: Cell Line S2-DRSC; Antibody H1 (target is H1)
Project description:modENCODE_submission_3299 This submission comes from a modENCODE project of Gary Karpen. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: We aim to determine the locations of the major histone modifications across the Drosophila melanogaster genome. The modifications under study are involved in basic chromosomal functions such as DNA replication, gene expression, gene silencing, and inheritance. We will perform Chromatin ImmunoPrecipitation (ChIP) using genomic tiling arrays. We will initially assay localizations using chromatin from three cell lines and two embryonic stages, and will then extend the analysis of a subset of proteins to four additional animal tissues/stages. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-chip. BIOLOGICAL SOURCE: Cell Line: ML-DmBG3-c2; Tissue: CNS-derived cell-line; Developmental Stage: third instar larval stage; Genotype: y v f mal; Sex: Unknown; NUMBER OF REPLICATES: 4; EXPERIMENTAL FACTORS: Cell Line ML-DmBG3-c2; Antibody H1 (target is H1)
Project description:modENCODE_submission_5134 This submission comes from a modENCODE project of Gary Karpen. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: We aim to determine the locations of the major histone modifications across the Drosophila melanogaster genome. The modifications under study are involved in basic chromosomal functions such as DNA replication, gene expression, gene silencing, and inheritance. We will perform Chromatin ImmunoPrecipitation (ChIP) using genomic tiling arrays. We will initially assay localizations using chromatin from three cell lines and two embryonic stages, and will then extend the analysis of a subset of proteins to four additional animal tissues/stages. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-chip. BIOLOGICAL SOURCE: Cell Line: Kc167; Tissue: embryo-derived cell-line; Developmental Stage: late embryonic stage; Genotype: se/e; Sex: Female; NUMBER OF REPLICATES: 4; EXPERIMENTAL FACTORS: Cell Line Kc167; Antibody H1 (target is H1)
Project description:modENCODE_submission_5133 This submission comes from a modENCODE project of Gary Karpen. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: We aim to determine the locations of the major histone modifications across the Drosophila melanogaster genome. The modifications under study are involved in basic chromosomal functions such as DNA replication, gene expression, gene silencing, and inheritance. We will perform Chromatin ImmunoPrecipitation (ChIP) using genomic tiling arrays. We will initially assay localizations using chromatin from three cell lines and two embryonic stages, and will then extend the analysis of a subset of proteins to four additional animal tissues/stages. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-chip. BIOLOGICAL SOURCE: Cell Line: CME-W1-Cl.8+; Tissue: dorsal mesothoracic disc; Developmental Stage: third instar larval stage; Sex: Male; NUMBER OF REPLICATES: 4; EXPERIMENTAL FACTORS: Cell Line CME-W1-Cl.8+; Antibody H1 (target is H1)