Anterograde Regulation of Nuclear-encoded Mitochondrial Genes and FGF21 Signaling by Hepatic Histone Demethylase LSD1
Ontology highlight
ABSTRACT: Mitochondrial biogenesis and function are controlled by anterograde regulatory pathways involving more than one thousand proteins encoded by nuclear genome. Transcriptional networks controlling the nuclear-encoded mitochondrial genes remain elucidated. Here we show that histone demethylase LSD1 knockout from adult mouse liver (LSD1-LKO) reduces one-third of all nuclear-encoded mitochondrial genes and decreases mitochondrial biogenesis and function. LSD1-modulated histone methylation epigenetically regulates nuclear-encoded mitochondrial genes. Furthermore, LSD1 targets methylation of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), the rate-limiting enzyme for nuclear NAD+ synthesis. Hepatic LSD1 knockout reduces NAD+-dependent Sirt1 and Sirt7 deacetylase activity, leading to hyperacetylation and hypofunctioning of GABP and PGC-1, the major transcriptional factor/cofactor for nuclear-encoded mitochondrial genes. Despite the reduced mitochondrial function, LSD1-LKO mice are protected from diet-induced hepatic steatosis and glucose intolerance, partially due to induction of hepatokine FGF21. Thus, LSD1 orchestrates a core regulatory network involving epigenetic modifications and NAD+ synthesis to control mitochondrial function and hepatokine production.
ORGANISM(S): Mus musculus
PROVIDER: GSE145089 | GEO | 2021/02/01
REPOSITORIES: GEO
ACCESS DATA