Transcriptomics

Dataset Information

0

Cell cycle checkpoints cooperate to suppress DNA and RNA associated molecular pattern recognition and anti-tumor immune responses


ABSTRACT: The DNA dependent pattern recognition receptor, cGAS mediates communication between genotoxic stress and the immune system. Mitotic chromosome missegregation is an established stimulator of cGAS activity, however, it is unclear if progression through mitosis is required for cancer cell intrinsic activation of immune mediated anti-tumor responses. Moreover, it is unknown if disruption of cell cycle checkpoints can restore responses in cancer cells that are recalcitrant to DNA damage induced inflammation. Here we demonstrate that prolonged cell cycle arrest at the G2-mitosis boundary from either CDK1 inhibition or excessive DNA damage prevents inflammatory stimulated gene expression and immune mediated destruction of tumors outside the field of irradiation. Remarkably, DNA damage induced inflammatory signaling is restored upon concomitant disruption of p53 and the G2 checkpoint, in a cGAS- and RIG-I- dependent manner. These findings link aberrant cell progression and p53 loss to an expanded spectrum of damage associated molecular pattern recognition and have implications for the design of rational approaches to augment anti-tumor immune responses.

ORGANISM(S): Homo sapiens

PROVIDER: GSE145148 | GEO | 2020/10/06

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2022-10-13 | PXD028336 | Pride
2020-05-11 | PXD017109 | Pride
2020-05-08 | PXD017133 | panorama
2008-06-15 | E-GEOD-7469 | biostudies-arrayexpress
2017-07-24 | GSE100771 | GEO
2021-09-09 | PXD019359 | Pride
2023-03-02 | PXD040544 |
2007-07-01 | GSE7469 | GEO
2020-12-31 | GSE141386 | GEO
2024-09-02 | BIOMD0000000660 | BioModels