Transcriptomics

Dataset Information

0

Decoding myofibroblast origins in human kidney fibrosis [RNA-seq]


ABSTRACT: Kidney fibrosis is the hallmark of chronic kidney disease progression, however currently no antifibrotic therapies exist. This is largely because the origin, functional heterogeneity and regulation of scar-forming cells during human kidney fibrosis remains poorly understood. Here, using single cell RNA-seq, we profiled the transcriptomes of proximal tubule and non-proximal tubule cells in healthy and fibrotic human kidneys to map the entire human kidney in an unbiased approach. This enabled mapping of all matrix-producing cells at high resolution, revealing distinct subpopulations of pericytes and fibroblasts as the major cellular sources of scar forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single cell RNA-seq and ATAC-seq experiments in mice, and spatial transcriptomics in human kidney fibrosis to functionally interrogate these findings, shedding new light on the origin, heterogeneity and differentiation of human kidney myofibroblasts and their fibroblast and pericyte precursors at unprecedented resolution. Finally, we used this strategy to facilitate target discovery, identifying Nkd2 as a myofibroblast-specific target in human kidney fibrosis.

ORGANISM(S): Mus musculus

PROVIDER: GSE145170 | GEO | 2020/10/07

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2020-10-07 | GSE145164 | GEO
2018-04-24 | GSE112033 | GEO
2019-09-21 | GSE125015 | GEO
2025-01-19 | GSE287413 | GEO
2011-05-31 | GSE23338 | GEO
2016-08-18 | E-MTAB-4810 | biostudies-arrayexpress
2011-05-30 | E-GEOD-23338 | biostudies-arrayexpress
2020-06-08 | GSE139107 | GEO
2014-07-28 | E-GEOD-49397 | biostudies-arrayexpress
2019-07-01 | E-MTAB-7298 | biostudies-arrayexpress