Identifying the genes involved in CD4+ T cell mediated-acute allograft rejection
Ontology highlight
ABSTRACT: Acute allograft rejection is a leading cause for the failure of organ allotransplantation. Identifying the genes involved in the rejection process provides clues to study the mechanisms, and to provide specific gene targets for monitoring, predicting and preventing acute allograft rejection. Using a mice model of skin acute allograft rejection and SAGE method, we analyzed gene expression in the CD4+ T cells of the mice, the cell type known to play critical roles in acute allograft rejection. Our study identifies 402 SAGE tags significantly different from these from the control. From these SAGE tags, we identified 91 increasingly and 85 decreasingly expressed genes, and many genes have not been linked with acute allograft rejection before. Functional classification of these genes shows that apoptosis, transcription regulation, cell growth and maintenance and signal transduction are among the most frequently changed functional groups. Our study provides a genome-wide view for the genes involving acute allograft rejection in the CD4+ T cells, and indicates that acute allograft rejection involves multiple genes in different functional categories. The genes identified from the study provide candidates for further studying the mechanisms and for monitoring, predicting and preventing acute allograft rejection.
ORGANISM(S): Mus musculus
PROVIDER: GSE14540 | GEO | 2010/03/01
SECONDARY ACCESSION(S): PRJNA111627
REPOSITORIES: GEO
ACCESS DATA