APETALA2‐like transcription factor in shoot architecture and perennial traits
Ontology highlight
ABSTRACT: Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) inArabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.
Project description:Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) inArabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.
Project description:Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) inArabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.
Project description:Perennial plants maintain their life span through several growth seasons. Arabis alpina serves as model Brassicaceae species to study perennial traits. A. alpina lateral stems have a proximal vegetative zone with a dormant bud zone, and a distal senescing seed-producing inflorescence zone. We addressed the questions of how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage, and which signals affect the zonation. We found that the vegetative zone ehxibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and sequestration of storage compounds. The inflorescence zone with only primary growth, termed annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application, cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis cytokinin-related genes represented enriched gene ontology terms and were expressed at higher level in PZ than AZ. Thus, A. alpina uses primarily the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.
Project description:Purpose: In higher plants, perennialism is achieved through axillary buds and side-shoots that stay vegetative. This work aims to analyze the pattern of axillary bud (AB) formation in the perennial model plant Arabis alpina and to study the role of LATERAL SUPPRESSOR (AaLAS) gene in this process. Methods: This study combines stereomicroscopic analysis with RNA sequencing to monitor how patterns of AB formation and gene expression correlate. The role of AaLAS was studied using an RNAi approach. Results: During vegetative development, ABs initiate at a distance to the SAM, whereas after induction of flowering ABs initiate adjacent to the SAM. Dormant buds are established before onset of vernalization. Transcript profiles of ABs initiated at a distance were different from that of the SAM, whereas transcript patterns of buds initiated in close proximity were similar to the corresponding SAM. Knock-down of AaLAS leads to loss of both dormant buds and vegetative side-shoots, strongly compromising perennial life style. Conclusions: AB formation is regulated differently during vegetative and reproductive development. New meristems that show gene expression profiles different from the SAM are established at a distance to the SAM. AaLAS plays an essential role in perennial life cycle modulating the establishment of dormant buds and vegetative side-shoots.
Project description:Arabis alpina, similar to woody perennials, has a complex architecture with a zone of axillary vegetative branches and a zone of dormant buds that serve as perennating organs. We show that floral development during vernalization is the key for shaping the dormant bud zone by facilitating a synchronized and rapid growth after vernalization and thereby causing an increase in auxin transport, response and endogenous indole-3-acetic acid (IAA) levels in the stem. Floral development during vernalization is associated with the development of axillary buds in subapical nodes. Our transcriptome analysis indicated that these buds are not dormant during vernalization but only reach sustained growth after the return to warm temperatures. Floral and subapical vegetative branches grow after vernalization and inhibit the development of the buds below. Dormancy in these buds is regulated across the A. alpina life cycle by low temperatures and by apical dominance in a BRANCHED 1 dependent mechanism.
Project description:Arctic alpine species experience extended periods of cold and unpredictable conditions during flowering. Thus, often, alpine plants use both sexual and asexual means of reproduction to maximise fitness and ensure reproductive success. We used the arctic alpine perennial Arabis alpina to explore the role of prolonged cold exposure on adventitious rooting. We exposed plants to 4 °C for different durations and scored the presence of adventitious roots on the main stem and axillary branches. Our physiological studies demonstrated the presence of adventitious roots after 21 weeks at 4 °C saturating the effect of cold on this process. Notably, adventitious roots on the main stem developingin specific internodes allowed us to identify the gene regulatory network involved in the formation of adventitious roots in cold using transcriptomics. These data and histological studies indicated that adventitious roots in A. alpina stems initiate during cold exposure and emerge after plants experience growth promoting conditions. While the initiation of adventitious root was not associated with changes of DR5 auxin response and free endogenous auxin level in the stems, the emergence of the adventitious root primordia was. Using the transcriptomic data, we discerned the sequential hormone responses occurring in various stages of adventitious root formation and identified supplementary pathways putatively involved in adventitious root emergence, such as glucosinolate metabolism. Together, our results highlight the role of low temperature during clonal growth in alpine plants and provide insights on the molecular mechanisms involved at distinct stages of adventitious rooting.
Project description:Axillary bud outgrowth determines plant shoot architecture and is under control of endogenous hormones and a fine-tuned gene expression network. Some genes associated with shoot development are known targets of small RNAs (sRNAs). Although it is well known that sRNAs act broadly in plant development, our understanding about their roles in vegetative bud outgrowth remains limited. Moreover, the expression profiles of microRNAs (miRNAs) and their targets in axillary buds are unknown. In this study, we employed next-generation sequencing, gene expression analysis and metabolite profiling to identify sRNAs and quantify distinct hormones, respectively, in vegetative axillary buds of the tropical biofuel crop sugarcane (Saccharum spp.). Differential accumulation of abscisic acid (ABA), gibberellins (GA), and cytokinins indicates a dynamic balance of these hormones during sugarcane bud outgrowth. A number of repeat-associated siRNAs generated from distinct transposable elements and genes were highly expressed in both inactive and developing buds. RT-qPCR results revealed that specific miRNAs were differentially expressed in developing buds and some correlate negatively with the expression of their targets. Expression patterns of miR159 and its experimentally confirmed target GAMYB suggest they play roles in regulating ABA and GA-signaling pathways during bud outgrowth. Our work reveals, for the first time, differences in composition and expression profiles of small RNAs and targets between inactive and developing buds that, together with the endogenous balance of specific hormones, may be important to regulate axillary bud outgrowth in plants. Examination of small RNA populations in vegetative axillary buds of the tropical biofuel crop sugarcane (Saccharum spp.)
Project description:Genome-wide landscapes of transcription factor (TF) binding sites (BSs) diverge during evolution, conferring species-specific transcriptional patterns. The rate of divergence varies in different metazoan lineages but has not been widely studied in plants. We identified the BSs and assessed the effects on transcription of FLOWERING LOCUS C (FLC) and PERPETUAL FLOWERING 1 (PEP1), two orthologous MADS-box TFs that repress flowering and confer vernalization requirement in the Brassicaceae species Arabidopsis thaliana and Arabis alpina, respectively. We found the BSs that were conserved in both species, and that these contained a CArG-box that is recognised by MADS-box TFs. The CArG-box consensus at conserved BSs was extended compared to the core motif. By contrast, species-specific BSs usually lacked the CArG-box in the other species. Flowering-time genes were highly overrepresented among conserved targets and their CArG-boxes were widely conserved among Brassicaceae species. Cold-regulated genes (COR) were also overrepresented among targets, but the cognate BSs and the identity of the regulated genes were different in each species. In cold, COR gene transcript levels were increased in flc and pep1-1 mutants compared to wild-type and this correlated with reduced growth in pep1-1. Therefore FLC orthologs regulate a set of conserved target genes mainly involved in reproductive development and were later independently recruited to modulate stress responses in different Brassicaceae lineages. Analysis of TF BSs in these lineages thus distinguishes widely conserved targets representing the core function of the TF from those that were recruited later in evolution.
Project description:Genome-wide landscapes of transcription factor (TF) binding sites (BSs) diverge during evolution, conferring species-specific transcriptional patterns. The rate of divergence varies in different metazoan lineages but has not been widely studied in plants. We identified the BSs and assessed the effects on transcription of FLOWERING LOCUS C (FLC) and PERPETUAL FLOWERING 1 (PEP1), two orthologous MADS-box TFs that repress flowering and confer vernalization requirement in the Brassicaceae species Arabidopsis thaliana and Arabis alpina, respectively. We found that only 17% of their BSs were conserved in both species and that these contained a CArG-box that is recognised by MADS-box TFs. The CArG-box consensus at conserved BSs was extended compared to the core motif. By contrast, species-specific BSs usually lacked the CArG-box in the other species. Flowering-time genes were highly overrepresented among conserved targets and their CArG-boxes were widely conserved among Brassicaceae species. Cold-regulated genes (COR) were also overrepresented among targets, but the cognate BSs and the identity of the regulated genes were different in each species. In cold, COR gene transcript levels were increased in flc and pep1-1 mutants compared to wild-type and this correlated with reduced growth in pep1-1. Therefore FLC orthologs regulate a set of conserved target genes mainly involved in reproductive development and were later independently recruited to modulate stress responses in different Brassicaceae lineages. Analysis of TF BSs in these lineages thus distinguishes widely conserved targets representing the core function of the TF from those that were recruited later in evolution.
Project description:The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, Îpep1 mutants fail to penetrate the epidermal cell wall and elicit a strong plant defense response. Using Affymetrix maize arrays we identified about 110 plant genes which are differentially regulated in Îpep1 and wild type infections during the penetration stage. Experiment Overall Design: In three independent experiments plants were infected with the strain SG200Dpep1 which is derived from the solopathogenic U. maydis strain SG200. Samples from infected leaves were taken at 24 hours post infection. Samples were treated under the same conditions as described previosly (Doehlemann et al. (2008) Plant J, in press).