Phased gene expression and chromatin accessibility during progressive EMT and MET linked to dynamic CTCF engagement (ATAC-Seq)
Ontology highlight
ABSTRACT: We report the chromatin accessibility alterations and gene expression changes in TGFB-induced and -withdrawn reversible EMT in MCF10A mammary epithelial cells
Project description:We report the chromatin accessibility alterations and gene expression changes in TGFB-induced and -withdrawn reversible EMT in MCF10A mammary epithelial cells
Project description:EMT, Epithelial to mesenchymal transition is a developmental biology process associated with migration, known to be involved in cancer metastasis. To study this process, we used the breast epithelial cell line MCF10A that enter in EMT after treatment with the cytokine TGFB or by expression of EMT transcriptor factor SNAIL.
Project description:To knock down SLC3A2, MCF10A cells were either transfected with control siRNAs, or siRNAs specifically targetting SLC3A2. Samples were either untreated or treated with TGFb. Ribosome profiling and RNA sequencing was performed on these samples. MCF10A cells with and without SLC3A2 overexpression construct were either untreated or treated with TGFb. Ribosome profiling was performed on these samples.
Project description:The RAVER1 protein was proposed to serve as a co-factor in guiding the PTBP-dependent control of alternative splicing (AS). Whether RAVER1 solely acts in concert with PTBPs and how it affects cancer cell fate remained elusive. Here we provide the first comprehensive investigation of RAVER1-controlled AS in cancer cell models and reveal a pro-oncogenic role of RAVER1 in tumor growth. This unravels that RAVER1 guides AS in synergy with PTBPs but more prominently serves PTBP1-independent roles in splicing. In cancer cells, one major function of RAVER1 is the control of proliferation and apoptosis, which involves the modulation of AS events within the miR/RISC pathway. Associated with this regulatory role, RAVER1 antagonizes lethal, TGFB-driven epithelial-mesenchymal-transition (EMT) by limiting TGFB signaling. RAVER1-modulated splicing events affect the insertion of protein interaction modules in factors guiding miR/RISC-dependent gene silencing. Most prominently, in all three human TNRC6 proteins, RAVER1 controls AS of GW-enriched motifs, which are essential for AGO2-binding. Disturbance of RAVER1-guided AS events in TNRC6 proteins and other facilitators of miR/RISC activity compromise miR/RISC activity which is essential to restrict TGFB signaling and lethal EMT.
Project description:Epithelial-to-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Paeoniflorin has been widely studied in experimental models and clinical trials for cancer treatment because of its anti-cancer property. However, the underlying mechanisms of paeoniflorin in EMT and angiogenesis in glioblastoma was not fully elucidated. The present study aimed to investigate whether paeoniflorin inhibits EMT and angiogenesis, which involving c-Met suppression, while exploring the potential ways of c-Met degradation. In our study, we found that paeoniflorin inhibited EMT via downregulating c-Met signaling in glioblastoma cells. Furthermore, overexpressing c-Met in glioblastoma cells abolished the effects of paeoniflorin on EMT. Moreover, paeoniflorin showed anti-angiogenic effects by suppressing cell proliferation, migration, invasion and tube formation through downregulating c-Met in human umbilical vein endothelial cells (HUVECs). And c-Met overexpression in HUVECs offset the effects of paeoniflorin on angiogenesis. Additionally, paeoniflorin induced autophagy activation involving mTOR/P70S6K/S6 signaling and promoted c-Met autophagic degradation, a process dependent on K63-linked c-Met polyubiquitination. Finally, paeoniflorin suppressed mesenchymal makers (snail, vimentin, N-cadherin) and inhibited angiogenesis via the identical mechanism in an orthotopic xenograft mouse model. The in vitro and in vivo experiments showed that paeoniflorin treatment inhibited EMT, angiogenesis and activated autophagy. What's more, for the first time, we identified c-Met may be a potential target of paeoniflorin and demonstrated paeoniflorin downregulated c-Met via K63-linked c-Met polyubiquitination-dependent autophagic degradation. Collectively, these findings indicated that paeoniflorin inhibits EMT and angiogenesis via K63-linked c-Met polyubiquitination-dependent autophagic degradation in human glioblastoma.