Functional subnetwork modules and discovery of hub genes with signal peptide using RNA-Seq (hybrid 33k44 vs. inbred B73)
Ontology highlight
ABSTRACT: We performed a systematic computational network-based analysis of large-scale F. verticillioides RNA-seq datasets to identify gene subnetwork modules associated with virulence and fumonisin regulation.
Project description:Using RNA-Seq datasets, we identified subnetwork modules (group of genes) and key functional (hub) genes associated with the fungal pathogenicity by developing a computational pipeline with network-based comparative analusis approach
Project description:Investigation of whole genome gene expression level changes over time of Fusarium verticillioides wild-type in liquid fumonisin inducing media (GYAM). Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media (Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249).
Project description:Investigation of whole genome gene expression level changes over time of Fusarium verticillioides wild-type in liquid fumonisin inducing media (GYAM) Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media, Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249
Project description:Investigation of whole genome gene expression level changes over time of Fusarium verticillioides wild-type in liquid fumonisin inducing media (GYAM) Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media, Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249 Wild type F. verticillioides strain 7600 cultured for two and five days in liquid GYAM.
Project description:Investigation of whole genome gene expression level changes after 6 days growth of Fusarium verticillioides wild-type and LAE1 deletion mutant in liquid fumonisin inducing media (GYAM) Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media, Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249.
Project description:Investigation of whole genome gene expression level changes over time of Fusarium verticillioides wild-type in liquid fumonisin inducing media (GYAM). Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media (Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249). A twelve chip study using total RNA recovered from twelve wild type cultures of Fusarium verticillioides. Each chip measures the expression level of 13,288 genes with thirteen 60-mer probe pairs per gene.
Project description:Investigation of whole genome gene expression level changes after 6 days growth of Fusarium verticillioides wild-type and LAE1 deletion mutant in liquid fumonisin inducing media (GYAM) Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media, Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249. 6 arrays: Two samples (wild type, LAE1 deletion mutant), one time point (6 days), three biological replicates.
Project description:Fusarium verticillioides is one of the most important pathogens of maize, causing rots and producing fumonisin mycotoxins during infection. Ingestion of fumonisin-contaminated corn causes underperformance and even fatal toxicity in livestock and is associated with neural tube birth defects, growth stunting in children and some cancers. StuA, an APSES class transcription factor, is commonly a major developmental transcriptional regulator in fungi. It has been shown to regulate crucial developmental processes, such as sporulation, virulence and mycotoxin synthesis among others. In this study, the role of FvSTUA in F. verticillioides was examined by characterizing ∆FvstuA deletion mutants functionally and transcriptomally. The deletion mutants exhibited slower vegetative growth, stunted aerial hyphae and significant reductions in microconidiation. Macroconidiation and hydrophobicity of the deletion strains were reduced as well. Additionally, fumonisin production by and virulence of the deletion mutants were greatly reduced. Transcriptomic analysis revealed downregulation of expression of several genes in the fumonisin and fusarin C biosynthetic clusters and differential expression of genes involved in conidiation and virulence. Nuclear localization of FvSTUA-tdTomato supported the likely function of FvSTUA as a transcription factor. Together, our results indicate that FvSTUA plays a global role in transcriptional regulation in F. verticillioides influencing morphogenesis, toxin production and virulence.