Extensive 5'-Surveillance Guards Against Non-Canonical NAD-Caps of Nuclear mRNAs in Yeast
Ontology highlight
ABSTRACT: The ubiquitous redox coenzyme nicotinamide adenine dinucleotide (NAD) acts as a noncanonical cap structure on prokaryotic and eukaryotic ribonucleic acids. Here we find that in budding yeast, NAD-RNAs are abundant (>1400 species), short (<170 nt), and mostly correspond to mRNA 5′-ends. The modification percentage of transcripts is low (<5%). NAD incorporation occurs mainly during transcription initiation by RNA polymerase II, which uses distinct promoters with a YAAG core motif for this purpose. Most NAD-RNAs are 3′-truncated. At least three decapping enzymes, Rai1, Dxo1, and Npy1, guard against NAD-RNA at different cellular locations, targeting overlapping transcript populations. NAD-mRNAs are not translatable in vitro. Our work indicates that in budding yeast, most of the NAD incorporation into RNA seems to be disadvantageous to the cell, which has evolved a diverse surveillance machinery to prematurely terminate, decap and reject NAD-RNAs.
Project description:The ubiquitous redox coenzyme nicotinamide adenine dinucleotide (NAD) acts as a non-canonical cap structure on prokaryotic and eukaryotic ribonucleic acids. Here we find that in budding yeast, NAD-RNAs are abundant (>1400 species), short (<170 nt), and mostly correspond to mRNA 5'-ends. The modification percentage is low (<5%). NAD is incorporated during the initiation step by RNA polymerase II, which uses distinct promoters with a YAAG motif for this purpose. Most NAD-RNAs are 3'-truncated. At least three decapping enzymes, Rai1, Dxo1, and Npy1, guard against NAD-RNA at different cellular locations, targeting overlapping transcript populations. NAD-mRNAs do not support translation in vitro. Our work indicates that in budding yeast, most of the NAD incorporation into RNA seems to be accidental and undesirable to the cell, which has evolved a diverse surveillance machinery to prematurely terminate, decap and reject NAD-RNAs.
Project description:The 5´-end 7-methylguanosine cap structure has long been known as a signature feature of eukaryotic cellular and viral mRNAs that confers mRNA stability and efficient translation. Recent findings in diverse organisms have demonstrated that RNAs can additionally possess a non-canonical cap structure consisting of a nicotinamide adenosine dinucleotide (NAD+) at their 5´ end in place of m7G. It has been shown that 5´ end-NAD+ cap promotes rapid decay of the RNA at least in part by the DXO family of proteins in mammalian cells. This observation led to the hypothesis that mammalian cells harbor additional deNADding enzymes that may function in distinct pathways. Here we report Nudt12 efficiently removes NAD+ caps and functions as alternate cellular deNADding enzyme that targets NAD+-capped RNAs distinct from DXO. Importantly, with the use of an NAD-Cap Detection (NAD-CapD) approach that utilizes enzymatic properties to release intact NAD+/NADH from the 5´ end of NAD-capped cellular RNAs and a colorimetric NAD Quantitation to detect released NAD+/NADH, we can follow total cellular NAD+ cap levels. Removal of Nudt12 or DXO deNADding enzymes from cells significantly increased levels of NAD+-capped cellular RNAs. Moreover, fungal Rai1 and Dxo1, previously demonstrated to possess deNADding activity in vitro, can also function as deNADding enzymes in yeast cells. Double disruption of Rai1 and Dxo1 in yeast cells lead to accumulation of NAD+-capped RNAs, indicating that both enzymes function to clear NAD+ from the 5´ end of RNAs. Finally, our findings established that alterations in cellular NAD+ levels impact NAD+-capped RNA levels implying NAD+ capping is a modulated process that may be linked to the metabolic state of the cell.
Project description:Accurate identification of NAD-capped RNAs is essential for understanding their biological function. Previous transcriptome-wide methods used to profile NAD-capped RNAs contain inherent limitations of having hindered the accurate identification of NAD caps from eukaryotic RNAs. Herein we introduced two novel orthogonal methods to precisely identify NAD-capped RNAs. One is D-SPAAC, a copper-free click-chemistry-based approach, and the second is an intramolecular ligation-based circNAD to resolve implicit limitations of the previous methods, which enabled us to unravel unforeseen features of NAD RNAs in budding yeast. Contrary to previous reports, we find that 1) cellular NAD RNAs can be full-length and polyadenylated transcripts, 2) transcription start sites for NAD-capped and canonical m7G-capped RNAs are different, and 3) NAD caps can be added post-transcriptionally. Moreover, we uncovered a dichotomy of NAD RNAs in translation where NAD RNAs are detected with mitochondrial ribosomes but not cytoplasmic ribosomes indicating their propensity to be translated in mitochondria.
Project description:Eukaryotic messenger RNAs (mRNAs) possess a 5’-end N7-methyl guanosine (m7G) cap that promotes their translation and stability. However, it was recently demonstrated that eukaryotic mRNAs can also carry a 5' end nicotinamide adenine dinucleotide (NAD+) cap that promotes mRNA decay mediated by the NAD+ decapping enzyme DXO1. However, the dynamic regulation of NAD+ capping in plant remains unknown. Here, we describe the global landscape of NAD+-capped RNAs in Arabidopsis thaliana, and demonstrate that DXO1 is responsible for removal of these 5’-end modifications and facilitates mRNA degradation in plant transcriptomes. We also reveal that in the absence of DXO1 NAD+-capped mRNAs are unstable and processed into smRNAs. Furthermore, we find that Abscisic Acid (ABA) remodel the landscape of RNA cap epitransciptome, and the mRNA lost their NAD+ cap contribute to their stability under ABA. Overall, our results support a link between ABA response and RNA NAD+ capping.
Project description:Eukaryotic messenger RNAs (mRNAs) possess a 5’-end N7-methyl guanosine (m7G) cap that promotes their translation and stability. However, it was recently demonstrated that eukaryotic mRNAs can also carry a 5' end nicotinamide adenine dinucleotide (NAD+) cap that promotes mRNA decay mediated by the NAD+ decapping enzyme DXO1. However, the dynamic regulation of NAD+ capping in plant remains unknown. Here, we describe the global landscape of NAD+-capped RNAs in Arabidopsis thaliana, and demonstrate that DXO1 is responsible for removal of these 5’-end modifications and facilitates mRNA degradation in plant transcriptomes. We also reveal that in the absence of DXO1 NAD+-capped mRNAs are unstable and processed into smRNAs. Furthermore, we find that Abscisic Acid (ABA) remodel the landscape of RNA cap epitransciptome, and the mRNA lost their NAD+ cap contribute to their stability under ABA. Overall, our results support a link between ABA response and RNA NAD+ capping.
Project description:Decapping 5'-3' exoribonucleases from the DXO/Rai1 family are highly conserved among eukaryotes and exhibit diverse enzymatic activities depending on the organism. The biochemical and structural properties of the plant DXO1 differ from the yeast and animal counterparts, which is reflected in the in vivo functions of this enzyme. Here we show that Arabidopsis DXO1 contributes to the efficient processing of rRNA precursors in both nucleolar/cytosolic and chloroplast maturation pathways. However, the processing defects in DXO1-deficient plants do not depend on the catalytic activity of the enzyme but rely on its plant-specific N-terminal extension, which is responsible for the interaction with the mRNA cap methyltransferase RNMT1. Our RNA sequencing analyses show that the dxo1 mutation deregulates the expression of many ribosomal protein genes, most likely leading to inefficient or delayed pre-rRNA maturation. These phenotypes are partially suppressed by RNMT1 overexpression, suggesting that defective cap synthesis may be responsible, at least to some extent, for the observed effects.
Project description:Decapping 5'-3' exoribonucleases from the DXO/Rai1 family are highly conserved among eukaryotes and exhibit diverse enzymatic activities depending on the organism. The biochemical and structural properties of the plant DXO1 differ from the yeast and animal counterparts, which is reflected in the in vivo functions of this enzyme. Here we show that Arabidopsis DXO1 contributes to the efficient processing of rRNA precursors in both nucleolar/cytosolic and chloroplast maturation pathways. However, the processing defects in DXO1-deficient plants do not depend on the catalytic activity of the enzyme but rely on its plant-specific N-terminal extension, which is responsible for the interaction with the mRNA cap methyltransferase RNMT1. Our RNA sequencing analyses show that the dxo1 mutation deregulates the expression of many ribosomal protein genes, most likely leading to inefficient or delayed pre-rRNA maturation. These phenotypes are partially suppressed by RNMT1 overexpression, suggesting that defective cap synthesis may be responsible, at least to some extent, for the observed effects.
Project description:The DXO family of proteins participates in eukaryotic mRNA 5'-end quality control, removal of non-canonical NAD+ cap and maturation of fungal rRNA precursors. In this work, we characterize DXO1, the Arabidopsis thaliana DXO homolog. We demonstrate that the plant-specific modification within the active site negatively affects 5'-end capping surveillance properties of DXO1, but has only a minor impact on its strong deNADding activity. Unexpectedly, catalytic activity does not contribute to striking morphological and molecular aberrations observed upon DXO1 knockout in plants, which include growth and pigmentation deficiency, global transcriptomic changes and accumulation of RNA quality control siRNAs. Conversely, these phenotypes depend on the plant-specific N-terminal extension of DXO1. Pale-green coloration of DXO1-deficient plants and our RNA-seq data reveal that DXO1 affects chloroplast-localized processes. We propose that DXO1 mediates the connection between RNA turnover and retrograde chloroplast-to-nucleus signaling independently of its deNADding properties.
Project description:RNA capping and decapping tightly coordinate with transcription, translation, and RNA decay to regulate gene expression. The DXO/Rai1 family of proteins have been implicated in mRNA decapping and decay, and mammalian DXO was recently found to also function as a decapping enzyme for NAD+-capped RNAs (NAD-RNA). The Arabidopsis genome contains a single gene encoding a DXO/Rai1 protein, AtDXO1. Here we show that AtDXO1 possesses both NAD-RNA decapping activity and 5’-3’ exonuclease activity and that the atdxo1 mutation increases the stability of NAD-RNAs. The atdxo1 mutant displays severe growth retardation, pale color, and multiple developmental defects. Transcriptome profiling analysis showed that the atdxo1 mutation leads to elevated expression of defense-related genes and down-regulation of photosynthesis genes. The autoimmunity phenotype of the mutant could be suppressed by either eds1 or npr1 mutation. Surprisingly, the various phenotypes associated with the atdxo1 mutant could be complemented by the enzymatically inactive AtDXO1. We found that AtDXO1 interacts with RNA cap methyltransferase (CMT). The atdxo1 mutation apparently enhances post-transcriptional gene silencing by elevating levels of siRNAs. Our study indicates that AtDXO1 regulates gene expression in various biological and physiological processes through its pleiotropic molecular functions in mediating RNA processing and decay.