A microarray-based method for the parallel analysis of genotypes and expression profiles in Eucalyptus grandis
Ontology highlight
ABSTRACT: Fast-growing Eucalyptus grandis trees are one of the most efficient producers of wood in South Africa. It is essential to maximize the effectiveness of these plantations by increasing their productivity, the quality and value of their products. We used microarray-based DNA-amplified fragment length polymorphism (AFLP) analysis in combination with expression profiling to develop fingerprints and profile gene expression of wood-forming tissue of seven individual E. grandis trees. A 1532-probe cDNA microarray was constructed by arraying 768 cDNA-AFLP fragments and 810 cDNA library clones from seven individual E. grandis trees onto silanised slides. The results revealed that 32% of the spotted fragments showed distinct expression patterns (with a fold change of at least 1.4 or -1.4 and a p value of 0.01) and could be grouped into clusters representing co-expressed genes. Evaluation of the binary distribution of cDNA-AFLP fragments on the array showed that the individual genotypes could be discriminated. A simple, yet general method was developed for genotyping and expression profiling of wood-forming tissue of E. grandis trees differing in their splitting characteristics and in their lignin contents. Evaluation of gene expression profiles and the binary distribution of cDNA-AFLP fragments on the chip suggest that the prototype chip developed could be useful for transcript profiling and for the identification of Eucalyptus trees with preferred wood quality traits in commercial breeding programmes.
ORGANISM(S): Eucalyptus grandis
PROVIDER: GSE14707 | GEO | 2009/10/01
SECONDARY ACCESSION(S): PRJNA112091
REPOSITORIES: GEO
ACCESS DATA