Investigation into SATB2 DNA-binding sites and the effect of SATB2 removal on the transcriptome of skeletal muscle satellite cells
Ontology highlight
ABSTRACT: Induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. In our associated paper, we found that the removal of special AT-rich binding protein 2 (SATB2), a nuclear protein that binds matrix attachment regions, is a key event in initiating myogenic differentiation. This study included ChIP-seq analyses to assess the genetic binding sites of SATB2 prior to differentiation and categorize their respective roles within the cell. Furthermore, transcriptome analyses using RNA-seq was conducted on C2C12 cells treated with control siRNA and siRNA against SATB2 prior to differentiation. This was done to assess the changes in transcript expression following the loss of SATB2.
Project description:Induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that removal of special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. Deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, while in vivo ablation depletes the muscle progenitor pool. Genome wide analysis indicates that SATB2 binding influences both chromatin loop and sub-TAD domain formation. These chromatin changes are both repressive and inductive, as loss of SATB2 leads to expression of differentiation regulatory factors and inhibition of genes that impair this process. Finally, we noted that the differentiation-specific decline in SATB2 protein is dependent on a caspase 7-mediated cleavage event. Taken together, this study demonstrates that temporal control of SATB2 protein is critical for shaping the chromatin environment and coordinating the myogenic differentiation program
Project description:Induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that removal of special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. Deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, while in vivo ablation depletes the muscle progenitor pool. Genome wide analysis indicates that SATB2 binding influences both chromatin loop and sub-TAD domain formation. These chromatin changes are both repressive and inductive, as loss of SATB2 leads to expression of differentiation regulatory factors and inhibition of genes that impair this process. Finally, we noted that the differentiation-specific decline in SATB2 protein is dependent on a caspase 7-mediated cleavage event. Taken together, this study demonstrates that temporal control of SATB2 protein is critical for shaping the chromatin environment and coordinating the myogenic differentiation program
Project description:Induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that removal of special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. Deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, while in vivo ablation depletes the muscle progenitor pool. Genome wide analysis indicates that SATB2 binding influences both chromatin loop and sub-TAD domain formation. These chromatin changes are both repressive and inductive, as loss of SATB2 leads to expression of differentiation regulatory factors and inhibition of genes that impair this process. Finally, we noted that the differentiation-specific decline in SATB2 protein is dependent on a caspase 7-mediated cleavage event. Taken together, this study demonstrates that temporal control of SATB2 protein is critical for shaping the chromatin environment and coordinating the myogenic differentiation program
Project description:The goal of the study was to identify the binding site of SATB2 in wild-ype cortex by performing ChIP-seq using SATB2 antibody. E15 cortical tissues were dissected, lysed and fixed. Chromatin was prepared by sonication. Sequences bound by SATB2 protein was precipitated using a SATB2 antibody. Sequencing was performed on Illumina Genome Analyzer II. SATB2 binding peaks were called using MACS. ChIP for Satb2, followed by sequencing on Illumina Genome Analyzer II platform
Project description:The chromatin organizers Satb1 and Satb2 regulate developmental genes in a tissue- and locus-specific manner. In mouse Embryonic Stem Cells (mESCs), the Satb proteins are involved in the balance between pluripotency and differentiation by direct control of key developmental factors such as Nanog and a number of Hox genes. Despite their structural similarities, the Satb proteins regulate mESC pluripotency in opposing ways: Satb1 promotes differentiation by repressing Nanog and activating the neural genes Bcl2 and Nestin, while Satb2 supports the pluripotent state by activating Nanog and repressing Satb1. To further address the mechanisms by which the Satb proteins regulate gene expression, we examined the conjugation of Satb2 with the small ubiquitin-like modifier (SUMO) in pluripotent and differentiated mESCs. We describe for the first time the endogenous SUMOylation of Satb2 in mESCs as a response to developmental cues. We found that Satb2 is progressively SUMO2-modified during differentiation of ESCs towards ectodermal precursors. Moreover, we identified Zfp451 as a SUMO E3 ligase able to interact with and modify Satb2 with SUMO2 in vitro and in vivo. Ablation of Zfp451 or mutation of the SUMO-acceptor lysines in the Satb2 protein disrupt the ability of mESCs to efficiently shut-down pluripotency genes and activate the differentiation program. Importantly, forced expression of SUMO2-Satb2 N-terminal fusions rescues the differentiation defect of SUMO-Satb2 deficient mESCs. Mechanistically, SUMOylation reduces binding of Satb2 to a subset of loci associated to pluripotency genes and changes the composition of Satb2-containing complexes in chromatin. Taken together, our data suggests that SUMO modification of the chromatin organizer Satb2 by the E3 ligase Zfp451 is required for the efficient downregulation of pluripotency genes and initiation of the differentiation program in mouse embryonic stem cells.
Project description:The chromatin organizers Satb1 and Satb2 regulate developmental genes in a tissue- and locus-specific manner. In mouse Embryonic Stem Cells (mESCs), the Satb proteins are involved in the balance between pluripotency and differentiation by direct control of key developmental factors such as Nanog and a number of Hox genes. Despite their structural similarities, the Satb proteins regulate mESC pluripotency in opposing ways: Satb1 promotes differentiation by repressing Nanog and activating the neural genes Bcl2 and Nestin, while Satb2 supports the pluripotent state by activating Nanog and repressing Satb1. To further address the mechanisms by which the Satb proteins regulate gene expression, we examined the conjugation of Satb2 with the small ubiquitin-like modifier (SUMO) in pluripotent and differentiated mESCs. We describe for the first time the endogenous SUMOylation of Satb2 in mESCs as a response to developmental cues. We found that Satb2 is progressively SUMO2-modified during differentiation of ESCs towards ectodermal precursors. Moreover, we identified Zfp451 as a SUMO E3 ligase able to interact with and modify Satb2 with SUMO2 in vitro and in vivo. Ablation of Zfp451 or mutation of the SUMO-acceptor lysines in the Satb2 protein disrupt the ability of mESCs to efficiently shut-down pluripotency genes and activate the differentiation program. Importantly, forced expression of SUMO2-Satb2 N-terminal fusions rescues the differentiation defect of SUMO-Satb2 deficient mESCs. Mechanistically, SUMOylation reduces binding of Satb2 to a subset of loci associated to pluripotency genes and changes the composition of Satb2-containing complexes in chromatin. Taken together, our data suggests that SUMO modification of the chromatin organizer Satb2 by the E3 ligase Zfp451 is required for the efficient downregulation of pluripotency genes and initiation of the differentiation program in mouse embryonic stem cells.
Project description:The chromatin organizers Satb1 and Satb2 regulate developmental genes in a tissue- and locus-specific manner. In mouse Embryonic Stem Cells (mESCs), the Satb proteins are involved in the balance between pluripotency and differentiation by direct control of key developmental factors such as Nanog and a number of Hox genes. Despite their structural similarities, the Satb proteins regulate mESC pluripotency in opposing ways: Satb1 promotes differentiation by repressing Nanog and activating the neural genes Bcl2 and Nestin, while Satb2 supports the pluripotent state by activating Nanog and repressing Satb1. To further address the mechanisms by which the Satb proteins regulate gene expression, we examined the conjugation of Satb2 with the small ubiquitin-like modifier (SUMO) in pluripotent and differentiated mESCs. We describe for the first time the endogenous SUMOylation of Satb2 in mESCs as a response to developmental cues. We found that Satb2 is progressively SUMO2-modified during differentiation of ESCs towards ectodermal precursors. Moreover, we identified Zfp451 as a SUMO E3 ligase able to interact with and modify Satb2 with SUMO2 in vitro and in vivo. Ablation of Zfp451 or mutation of the SUMO-acceptor lysines in the Satb2 protein disrupt the ability of mESCs to efficiently shut-down pluripotency genes and activate the differentiation program. Importantly, forced expression of SUMO2-Satb2 N-terminal fusions rescues the differentiation defect of SUMO-Satb2 deficient mESCs. Mechanistically, SUMOylation reduces binding of Satb2 to a subset of loci associated to pluripotency genes and changes the composition of Satb2-containing complexes in chromatin. Taken together, our data suggests that SUMO modification of the chromatin organizer Satb2 by the E3 ligase Zfp451 is required for the efficient downregulation of pluripotency genes and initiation of the differentiation program in mouse embryonic stem cells.
Project description:Satb1 and Satb2 are regulators of higher order chromatin in T cells and osteoblasts repectively. We were interested if Satb1 and Satb2 play a role in the regulation of gene expression in ES cells. This SuperSeries is composed of the following subset Series: GSE17487: Expression data in WT and Satb1-/- ES cells GSE17488: Expression data in WT and ES cells overexpressing Satb1 GSE17489: Expression data in WT and ES cells overexpressing Satb2 Refer to individual Series
Project description:During CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To which extent symptoms in SATB2-related human pathologies depend on developmental or adult functions of the protein remains to be established. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we compared SATB2 protein interactomes and SATB2-driven gene expression programs at the two ontogenetic stages by co-IP mass spectrometry and RNAseq analyses, respectively. Our results demonstrated that 1) SATB2 interacts with different protein networks at the two ontogenetic stages, with a switch from transcriptional repression towards organization of chromatin structure and 2) SATB2 determines differential transcriptional programs in neonatal vs adult cortex.