TBBPA, TBBPS and TCBPA disrupt hESCs hepatic differentiation and promote the proliferation of differentiated cells seemingly via up-regulating the FGF10 signaling pathway
Ontology highlight
ABSTRACT: Halogenated flame retardants (HFRs) Tetrabromobisphenol A (TBBPA), Tetrabromobisphenol S (TBBPS) and Tetrachlorobisphenol (TCBPA) are wildly applied in manufacturing industry to improve the fire safety of the products. Recent reports demonstrated that TBBPA, TBBPS and TCBPA can be detected in pregnant women serum at nanomolar-level. Considering TBBPA have also been detected in the cord serum and the structural similarity of the 3 HFRs, it is necessary to pay attention to their development toxicity. Liver is the important detoxic organ but also target of TBBPA since it has been demonstrated that TBBPA exposure lead to increased liver weight in mouse and rat. So the developmental hepatic toxicity of the 3 HFRs were studied in this current research with the transcriptomic and human embryonic stem cells hepatic differentiation based toxicity evaluation system. A hepatic differentiation specific lineage development map and cell lineage - gene expression annotations were made and used for easily assessing the lineage alternations caused by toxicant treatment. Together with GO and KEGG analysis, this study mainly demonstrated that, the 3 HFRs have many common disruptive effect on hepatic differentiation, while only TCBPA significantly inhibited hepatic differentiation. The up-regulation of genes related to cell cycle and FGF10 signaling pathway at relatively late stage of hepatic differentiation indicates the proliferation of hepatoblasts were promoted by the 3 HFRs, likely via up-regulating the FGF10 signaling pathway. The proliferating promoting effect may partly explain why liver gain weight in rodents exposed to TBBPA.
Project description:Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs' potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical WNT pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.
Project description:We evaluated the hepatic developmental toxicity of TBBPA/TBBPS/TCBPA with a human embryonic stem cells (hESC) system. We found that TBBPA/TBBPS/TCBPA might adversely affect human hepatocyte-like cells specification from hESCs via mainly impairing definitive endoderm specifications, suggesting the early stages of embryonic development are susceptible to the three compounds.
Project description:To identify liver transcripts differentially expressed due to treatment with tetrabromobisphenol A-bis(2,3-dibromopropyl ether) (TBBPA-DBPE), we collected RNA from male Harlan Sprague Dawley rats exposed to 0, 0.1, 0.94, 9.4, 94.3 or 943 mg/kg TBBPA.DBPE, 5 days after exposure for animals 7 weeks of age. These samples were interrogated with the Affymetrix Rat Genome 230 2.0 GeneChip array. A total of 0,0,0,0,0, and 0 gene transcripts were differentially expressed due to TBBPA.DBPE treatment after exposure to 0.1, 0.94, 9.4, 94.3 or 943 mg/kg TBBPA.DBPE (false discovery rate (FDR) < 0.05).
Project description:Single cell-based studies have revealed tremendous cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degree of plasticity during organogenesis. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including liver, pancreas, gallbladder, and extra-hepatic bile ducts. Experimental manipulation of various developmental signals in the mouse embryo underscored important cellular plasticity in this embryonic territory. This is also reflected in the existence of human genetic syndromes as well as congenital or environmentally-caused human malformations featuring multiorgan phenotypes in liver, pancreas and gallbladder. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary, and pancreatic structures are not yet established. Here, we combine computational modelling approaches with genetic lineage tracing to assess the tissue dynamics accompanying the ontogeny of the hepato-pancreato-biliary organ system. We show that a multipotent progenitor domain persists at the border between liver and pancreas, even after pancreatic fate is specified, contributing to the formation of several organ derivatives, including the liver. Moreover, using single-cell RNA sequencing we define a specialized niche that possibly supports such extended cell fate plasticity.
Project description:3,3’,5.5’-Tetrabromobisphenol A (TBBPA) is a widely used brominated flame-retardant utilized in the production of electronic devices and plastic paints. The objective of this study is to use zebrafish as a model and determine the effects of TBBPA exposure on early embryogenesis. We initiated TBBPA exposures (0, 10, 20 and 40μM) at 0.75 h post fertilization (hpf) and monitored early developmental events such as cleavage, blastula and epiboly that encompass maternal-to-zygotic transition (MZT) and zygotic genome activation (ZGA). Our data revealed that TBBPA exposures induced onset of developmental delays by 3 hpf (blastula). By 5.5 hpf (epiboly), TBBPA-exposed (10-20 μM) embryos showed concentration-dependent developmental lag by up to 3 stages or 100% mortality at 40 μM. Interestingly, while continued 0.75- 48 hpf TBBPA exposures (10 μM) led to severely deformed embryos, replacing exposure solution with chemical-free media at 6 hpf mitigated this effect, with 100% normal embryos at 48 hpf. To examine the genetic basis of TBBPA-induced delays, we conducted mRNA-sequencing on embryos exposed to 0 or 40 μM TBBPA from 0.75 hpf to 2, 3.5 or 4.5 hpf. Read count data showed that while TBBPA exposures had no overall impacts on maternal or maternal-zygotic genes, collective read counts for zygotically activated genes were lower in TBBPA treatment at 4.5 hpf compared to time-matched controls, suggesting that TBBPA delays ZGA. Gene ontology assessments for both time- and stage-matched differentially expressed genes revealed TBBPA-induced inhibition of chromatin assembly- a process regulated by histone modifications. Since acetylation is the primary histone modification system operant during early ZGA, we hypothesized that TBBPA inhibits histone acetylation, resulting in lack of open chromatin within promoters of zygotic genes and delaying ZGA. Therefore, we co-exposed embryos to 20 μM TBBPA and 100 μM N-(4-Chloro-3-(trifluoromethyl)phenyl)-2-ethoxybenzamide (CTB) -a histone acetyltransferase activator that promotes histone acetylation- and showed that TBBPA-CTB co-exposures from 0.75- 3 hpf significantly reversed TBBPA-only developmental delays, suggesting that TBBPA-induced phenotypes are indeed driven by repression of histone acetylation. Collectively, our work demonstrates that TBBPA disrupts ZGA and early developmental morphology, potentially by inhibiting histone acetylation. Future studies will focus on mechanisms of TBBPA-induced chromatin modifications.
Project description:In this study, we differentiated mouse ESCs via 3D aggregates called embryoid bodies in presence of environmental and human relevant TBPPA concentrations for 28 days. We collected samples at different time points and analyzed TBBPA-dependent global gene expression changes by RNA-seq. Our analyses revealed a potential TBBPA multifaceted developmental toxicity with effects on the nervous and cardiac/skeletal muscle systems. Mechanistically, our findings suggest TBBPA endocrine disrupting activities in part via prolactin signaling.
Project description:The winged helix transcription factor Foxl1 is a marker for progenitor cells and their descendants in the mouse liver in vivo. Here, we purify progenitor cells from Foxl1-Cre; RosaYFP mice and evaluate their proliferative and differentiation potential in vitro. Treatment of Foxl1-Cre; RosaYFP mice with 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet led to an increase of the percentage of YFP-labeled Foxl1+ cells. Clonogenic assays demonstrated that up to 3.6% of Foxl1+ cells had proliferative potential. Foxl1+ cells differentiated into cholangiocytes and into hepatocytes in vitro, depending on the culture condition employed. Microarray analyses indicated that Foxl1+ cells express stem cell markers such as Prom1 as well as differentiation markers such as Ck19 and Hnf4a. Thus, the Foxl1-Cre; RosaYFP model allows for easy isolation of adult hepatic progenitor cells that can be expanded and differentiated in culture. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE28890: Foxl1-Cre-marked Adult Hepatic Progenitors Have Clonogenic and Bi-Lineage Differentiation Potential - Time Course GSE28891: Foxl1-Cre-marked Adult Hepatic Progenitors Have Clonogenic and Bi-Lineage Differentiation Potential - Differentiated vs Primary
Project description:Hepatic transcriptomic alterations for tetrabromobisphenol A-bis(2,3-dibromopropyl ether) (TBBPA-DBPE) after 5-day exposure in rats
Project description:TBBPA, TBBPS and TCBPA disrupt hESCs hepatic differentiation and promote the proliferation of differentiated cells seemingly via up-regulating the FGF10 signaling pathway