Research on the circular RNA bioinformatics in patients with acute myocardial infarction
Ontology highlight
ABSTRACT: To further development of our gene expression approach to biodosimetry, We through the detection of circular RNA (circRNA) using expression profiling chips, we searched for circRNAs related to acute myocardial infarction (AMI) and explored their relationship and possible mechanisms with AMI. The study subjects included 3 AMI patients and 3 controls, and circRNA expression profiling analysis was performed using a microarray gene chip to identify circRNAs with large differences in expression between groups and to construct a circRNA-microRNA (circRNA-miRNA) network.
Project description:The circRNA array was applied to investigate the expression level of circRNAs in the blood samples of coronary arteries of AMI patients and normal persons. Differentially-expressed circRNAs and potential circRNA-miRNA networks were identified in AMI patients.
Project description:A series of system biological analysis are performed on RNA expression to find new effective circRNA biomarkers for AMI. Firstly, the expression level of circRNA in blood samples of patients with AMI and those with mild coronary stenosis are compared to reveal circRNAs which are involved in AMI. Then, circRNAs which are significant expressed abnormally in the blood samples of patients with AMI are selected from those circRNAs.
Project description:Circular RNAs (circRNAs) are a large class of animal RNAs. To investigate possible circRNA functions, it is important to understand circRNA biogenesis. Besides human Alu repeats, sequence features that promote exon circularization are largely unknown. We experimentally identified new circRNAs in C. elegans. Reverse complementary sequences between introns bracketing circRNAs were significantly enriched compared to linear controls. By scoring the presence of reverse complementary sequences in human introns we predicted and experimentally validated novel circRNAs. We show that introns bracketing circRNAs are highly enriched in RNA editing or hyper-editing events. Knockdown of the double-strand RNA editing ADAR1 enzyme significantly and specifically up-regulated circRNA expression. Together, our data support a model of animal circRNA biogenesis in which competing RNA:RNA interactions of introns form larger structures which promote circularization of embedded exons, while ADAR1 antagonizes circRNA expression by melting stems within these interactions. Thus, we assign a new function to ADAR1. Examination of 12 samples in different stages of C.elegans development.
Project description:Circular RNAs (circRNAs) are an endogenous class of animal RNAs. Despite their abundance, their function and expression in the nervous system are unknown. Therefore, we sequenced RNA from different brain regions, primary neurons, isolated synapses, as well as during neuronal differentiation. Using these and other available data, we discovered and analyzed thousands of neuronal human and mouse circRNAs. circRNAs were extraordinarily enriched in the mammalian brain, well conserved in sequence, often expressed as circRNAs in both human and mouse, and sometimes even detected in Drosophila brains. circRNAs were overall upregulated during neuronal differentiation, highly enriched in synapses, and often differentially expressed compared to their mRNA isoforms. circRNA expression correlated negatively with expression of the RNA-editing enzyme ADAR1. Knockdown of ADAR1 induced elevated circRNA expression. Together, we provide a circRNA brain expression atlas and evidence for important circRNA functions and values as biomarkers. To assess circRNA expression in mammalian brain, we sequenced and analyzed mouse brain regions (hippocampus, cerebellum, prefrontal cortex and olfactory bulb), various neuronal differentiation (mouse P19 and human SH-SY5Y cells) and maturation (mouse cortical neurons) stages, and subcellular compartments in mouse (synaptoneurosomal fraction, cytoplasmic fraction, whole brain lysate).
Project description:This study demonstrated that there were a number of dysregulated circRNAs in exosomes from OSA with AMI patients, which might be effectively served as a promising diagnostic biomarker and therapeutic targets. Objectives: Circular RNAs (circRNAs) are recently identified as a class of non-coding RNAs that participate in the incidence of acute myocardial infarction(AMI)
Project description:The human genome encodes tens of thousands circular RNAs (circRNAs) whose levels correlate with many disease states. While studies have focused on the non-coding functions of circRNAs, emerging evidence suggests that a handful of circRNAs encode proteins. Translation canonically starts by recognition of mRNA 5’cap and scanning to the start codon; how circRNA translation initiates remains unclear. Here, we developed a high-throughput screen to systematically identify and quantify RNA sequences that can direct circRNA translation. We identify and validate over 17,000 circRNA internal ribosome entry sites (IRES) and reveal that 18S rRNA complementarity and a structured RNA element on the IRES are important for facilitating circRNA cap-independent translation. With genomic and peptidomic analyses of the IRES, we identified nearly 1,000 putative endogenous protein-coding circRNAs and hundreds of translational units encoded by these circRNAs. We further characterized circFGFR1p, a protein encoded by circFGFR1, functions as a negative regulator of FGFR1 to suppress cell growth under stress conditions. The circRNA proteome may be important links among circRNA, biological control, and disease.
Project description:The human genome encodes tens of thousands circular RNAs (circRNAs) whose levels correlate with many disease states. While studies have focused on the non-coding functions of circRNAs, emerging evidence suggests that a handful of circRNAs encode proteins. Translation canonically starts by recognition of mRNA 5’cap and scanning to the start codon; how circRNA translation initiates remains unclear. Here, we developed a high-throughput screen to systematically identify and quantify RNA sequences that can direct circRNA translation. We identify and validate over 17,000 circRNA internal ribosome entry sites (IRES) and reveal that 18S rRNA complementarity and a structured RNA element on the IRES are important for facilitating circRNA cap-independent translation. With genomic and peptidomic analyses of the IRES, we identified nearly 1,000 putative endogenous protein-coding circRNAs and hundreds of translational units encoded by these circRNAs. We further characterized circFGFR1p, a protein encoded by circFGFR1, functions as a negative regulator of FGFR1 to suppress cell growth under stress conditions. The circRNA proteome may be important links among circRNA, biological control, and disease.
Project description:The human genome encodes tens of thousands circular RNAs (circRNAs) whose levels correlate with many disease states. While studies have focused on the non-coding functions of circRNAs, emerging evidence suggests that a handful of circRNAs encode proteins. Translation canonically starts by recognition of mRNA 5’cap and scanning to the start codon; how circRNA translation initiates remains unclear. Here, we developed a high-throughput screen to systematically identify and quantify RNA sequences that can direct circRNA translation. We identify and validate over 17,000 circRNA internal ribosome entry sites (IRES) and reveal that 18S rRNA complementarity and a structured RNA element on the IRES are important for facilitating circRNA cap-independent translation. With genomic and peptidomic analyses of the IRES, we identified nearly 1,000 putative endogenous protein-coding circRNAs and hundreds of translational units encoded by these circRNAs. We further characterized circFGFR1p, a protein encoded by circFGFR1, functions as a negative regulator of FGFR1 to suppress cell growth under stress conditions. The circRNA proteome may be important links among circRNA, biological control, and disease.
Project description:The human genome encodes tens of thousands circular RNAs (circRNAs) whose levels correlate with many disease states. While studies have focused on the non-coding functions of circRNAs, emerging evidence suggests that a handful of circRNAs encode proteins. Translation canonically starts by recognition of mRNA 5’cap and scanning to the start codon; how circRNA translation initiates remains unclear. Here, we developed a high-throughput screen to systematically identify and quantify RNA sequences that can direct circRNA translation. We identify and validate over 17,000 circRNA internal ribosome entry sites (IRES) and reveal that 18S rRNA complementarity and a structured RNA element on the IRES are important for facilitating circRNA cap-independent translation. With genomic and peptidomic analyses of the IRES, we identified nearly 1,000 putative endogenous protein-coding circRNAs and hundreds of translational units encoded by these circRNAs. We further characterized circFGFR1p, a protein encoded by circFGFR1, functions as a negative regulator of FGFR1 to suppress cell growth under stress conditions. The circRNA proteome may be important links among circRNA, biological control, and disease.
Project description:Circular RNAs (circRNA) are special non-coding RNAs. They are widely present, but with unknown functions. Recent studies have shown that many endogenous circRNAs have sponge function to absorb microRNAs. They can regulate target gene mRNA expression and play important roles in many biological processes. However, expression profile and function of circRNAs in human TSCC haven’t been reported. High-throughput sequencing was performed to identify and annotate from three TSCC tissues and adjacent tissues. A separate set (n=20) of human TSCCs and corresponding adjacent tissues were subjected to RT-PCR for validation of circular RNAs expression profile. GO functional analysis, KEGG pathway analysis, and circRNA–microRNA network analysis were also performed to predict the function of circRNA in TSCC.A total of 12,156 circRNAs were identified and annotated, most of the circRNAs were novel (n=6,231) and exonic (62.09%). Statistical analysis revealed 322 differentially expressed (DE) circRNAs. RT-PCR results showed that circRNA expression in TSCC was higher than that in adjacent tissues. GO functional analysis, KEGG pathway analysis, and circRNA–microRNA network analysis all showed that circRNAs correlated with tumor development and progression to a certain extent. The present study is the first to systematically characterize and annotate circRNA expression in TSCC, the majority were novel circRNAs. Some host genes of the DE circRNAs were involved in tumor signaling pathway and had complicated correlations with tumor-relevant microRNAs, indicating that circRNAs might be promoted development and progression of TSCC.