Project description:Four separate biological collections of unfertilized eggs laid by wildtype females mated with sterile males, eggs dechorionated and snap-forzen in liquid nitrogen 0-1 hour after egg lay. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:2C embryos were generated from Kdm1a FL/Fl Zp3Cre females mated to wild type males for RNA-seq analysis using the Nugen Ovation RNA-seq system V2. Ovulated eggs from Kdm1a FL/Fl Zp3Cre females were isolated for RNA-seq analysis using the Nugen Ovation RNA-seq system V2.
Project description:We analyzed miRNA-based shRNA off-target effects by transducing Trp53-/- MEFs at single- and high-copy with six well-characterized, potent and weak Trp53 shRNAs. To advance RNAi therapy for KRAS-mutant cancer, we developed a functionally validated library of siRNAs against RAS pathway genes that minimize off-target effects and enable combination gene silencing at low dose. We developed an in vivo model for real-time tracking of nanoparticle-based siRNA delivery and offer proof-of-principle that siRNA-mediated inhibition of a single gene (KRAS) or combinations of genes (A/B/C-RAF or KRAS+PIK3C-A/B) can impair the growth of KRAS-mutant colorectal cancer xenografts. Trp53-/- MEFs were transduced with LMP expressing Trp53 shRNAs at single copy (11-21% infection efficiency) and high copy (>98% infection efficiency), selected on puromycin and grown in absence of the selection agent before harvest. Uninfected Trp53-/- MEFs and Trp53-/- MEFs infected with an empty vector control served as M-bM-^@M-^\no shRNAM-bM-^@M-^] reference.
Project description:This RNA sequencing experiment is part of the study \\"Preclinical animal model of Diamond-Blackfan anemia with single amino acid mutation of ribosomal protein Rps19\\". A mouse model with conserved arginine 67 deletion of ribosomal protein Rps19 mutation develops features characteristic of human Diamond-Blackfan anemia, a rare bone marrow failure syndrome, including hematologic dysfunctions, early onset growth delay, intrinsic anemia, severe craniofacial, skeletal, urogenital, cardiovascular, and cerebral abnormalities leading to premature lethality during the adolescence of the mouse. This DBA mouse model exhibits cell intrinsic activation of the Trp53 signaling pathway in hematopoietic stem cells (HSCs) leading to reduced erythroid lineage development that may be rescued after inactivation of the tumor suppressor Trp53. The E14.5 fetal liver transcriptome analysis study confirms the involvement of non-canonical components of the p53 signaling pathway in the etiopathogenesis of DBA, manifested already during fetal development, consistent with the early onset of DBA-like phenotypes in mouse embryos as well as development of the disease in neonatal human patients. These results confirm our previous findings in adult hematopoietic progenitors as well as indicate that the development of DBA occurs well into the fetal development in both humans and our mouse model.
Project description:Trp53-null, Trp53-515C/515C (encoding p53R172P), or wild-type mouse embryo fibroblasts were treated with 6 Gy gamma-radiation and harvested 6 hours later to compare expression profiles of genes regulated by wild-type p53 and p53R172P. Trp53-null cells were included as a negative control.
Project description:Four separate biological collections of unfertilized eggs laid by wildtype females mated with sterile males, eggs dechorionated and snap-forzen in liquid nitrogen 0-1 hour after egg lay. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed
Project description:Loss of Pten in the KrasG12D;Amhr2-Cre mutant mice leads to the transformation of ovarian surface epithelial (OSE) cells and rapid development of low-grade, invasive serous adenocarcinomas. Tumors occur with 100% penetrance and express elevated expression of wild type tumor repressor protein 53 (TRP53). To test the functions of TRP53 in the Pten;Kras (Trp53+) mice, we disrupted the Trp53 gene yielding Pten;Kras(Trp53-) mice. By comparing morphology and gene expression profiles in the Trp53+ and Trp53- OSE cells, we document that wild-type TRP53 acts as a major promoter of OSE cell survival and differentiation: cells lacking Trp53 are transformed yet are less adherent, migratory and invasive and exhibit a gene expression profile more like normal OSE cells. These results provide a new paradigm: wild type TRP53 does not preferentially induce apoptotic or senescent related genes in the Pten;Kras(Trp53+) cancer cells but rather increases genes regulating DNA repair, cell cycle progression and proliferation and decreases putative tumor suppressor genes. However, if TRP53 activity is forced higher by exposure to nutlin-3a (an MDM2 antagonist), TRP53 suppresses DNA repair genes and induces the expression of genes that control cell cycle arrest and apoptosis. Thus, in the Pten;Kras(Trp53+) mutant mouse OSE cells and likely in human TP53+ low grade ovarian cancer cells, wild type TRP53 controls global molecular changes that are dependent on its activation status. These results suggest that activation of TP53 may provide a promising new therapy for managing type I ovarian cancer and other cancers in humans where wild-type TP53 is expressed. A direct comparison of ovarian surface epithelia cells from three different genotype mice