PiRNA analysis of tudor[1] mutant Drosophila brain and ovaries
Ontology highlight
ABSTRACT: 23-29 nt Piwi-interacting RNAs (piRNAs) are crucial components of the ribonucleoprotein complexes which silence the most abundant class of mobile genetic elements in human genome, retrotransposons, in germline (germ) cells. In these cells, antisense piRNAs serve as RNA guides for Piwi proteins, base pairing with transposon RNAs which are subsequently cleaved by Piwi proteins. Germ cells belong to special class of stem cells which ultimately give rise to eggs and sperm and therefore, to next generations. Therefore, piRNAs protect next-generation genomes from devastating mutations caused by transposon insertions. Although, role of piRNAs in germ cells has been studied, functions of piRNAs and their associated proteins in somatic cells are not well understood. Importantly, Piwi proteins are expressed in the fruit fly Drosophila brain and are required for the silencing of transposable elements there, clearly indicating that Piwi-associated piRNAs are involved in this process in the brain. Furthermore, piRNAs have been implicated in the memory formation mechanisms in Aplysia brain. In addition to Piwi proteins, their associated partner, molecular scaffold Tudor protein, participates in piRNA biogenesis in germ cells and it is absolutely required for germline development. However, although tudor gene is expressed in the fly brain, its role in the central nervous system is not understood. In this study, we look at the role of Tudor as an essential player in piRNA biogenesis in Drosophila brain.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE149748 | GEO | 2020/11/27
REPOSITORIES: GEO
ACCESS DATA