MicroRNA profiling of Oropharyngeal tissue from chronically SIV infected rhesus macaques
Ontology highlight
ABSTRACT: The study describes miRNA expression in Oropharyngeal tissue of chronically SIV-infected rhesus macaques. To identify the underlying molecular mechanisms we simultaneously profiled miRNA and mRNA expression in oropharyngeal tissues of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs). Relative to controls, we identified 48 (38-upregulated and 10 downregulated) differentially expressed (DE) miRNAs relative to uninfected controls (n=5). Interestingly, in terms of magnitude, miR-19a, miR-301, miR-142-3p, miR-32 and miR-142-5p were among a select list of miRNAs that showed the highest upregulation in OPM. An important finding is the significant upregulation in OPM of miR-21, a microRNA known to regulate periodontitis, T-cell activation and oral carcinoma. Interestingly, RNA-seq for gene expression profiling also confirmed miR-21 upregulation in OPM of VEH-untreated/SIV rhesus macaques. Using TargetScan 7.2, we identified TSC22D3 (TSC22-domain family member 3), an anti-inflammatory protein induced by glucocorticoids and IL10 that was significantly downregulated in OPM of VEH-untreated/SIV macaques to be a predicted target of miR-29b. TSC22D3 localized to minor salivary gland acini and secretory ducts and showed reduced expression in OPM of VEH-untreated chronically SIV macaques. Using luciferase reporter and overexpression assays, we confirmed TSC22D3 to be a direct target of miR-29b. Interestingly, expression of miR-150 was significantly downregulated, a miRNA we previously demonstrated to be downregulated during T cell activation in the intestine. These findings strongly support a role for differential miRNA expression associated with HIV/SIV induced oropharyngeal mucosal dysfunction.
Project description:HIV/SIV associated oral mucosal disease/dysfunction (HAOMD) (gingivitis/periodontitis/salivary adenitis) represents a major comorbidity affecting HIV patients on anti-retroviral therapy. Using a systems biology approach, we investigated molecular changes (mRNA/microRNA) underlying HAOMD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (Δ9-THC)] in uninfected (n=5) and SIV-infected rhesus macaques untreated (VEH-untreated/SIV; n=7) or treated with vehicle (VEH/SIV; n=3) or Δ9-THC (THC/SIV; n=3). Relative to controls fewer mRNAs were upregulated in THC/SIV compared to VEH-untreated/SIV macaques. Gene enrichment analysis showed differential enrichment of biological functions involved in anti-viral defense, Type-I interferon, Toll-like receptor, RIG-1 and IL1R signaling in VEH-untreated/SIV macaques. We focused on the anti-ER-stress anterior gradient-2 (AGR2), epithelial barrier protecting and anti-dysbiotic WAP Four-Disulfide Core Domain 2 (WFDC2), and glucocorticoid-induced anti-inflammatory TSC22D3 (TSC22-domain family member 3) that were significantly downregulated in OPM of VEH-untreated/SIV macaques. All three proteins localized to minor salivary gland acini and secretory ducts and showed enhanced and reduced expression in OPM of THC/SIV and VEH/SIV macaques, respectively. Additionally, inflammation associated miR-21, miR-142-3p and miR-29b showed significantly higher expression in OPM of VEH-untreated/SIV macaques. TSC22D3 was validated as a target of miR-29b. These preliminary translational findings suggest that phytocannabinoids may safely and effectively reduce oral inflammatory responses in HIV/SIV and other diseases.
Project description:The study describes miRNA expression changes in basal ganglia (BG) of chronically SIV-infected rhesus macaques. HIV/SIV-associated neurological disorder (HAND) represents a major comorbidity affecting HIV patients on anti-retroviral therapy. Employing a systems biology approach, we report molecular changes underlying HAND and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (9-THC)] in uninfected and SIV-infected rhesus macaques (RMs) treated with vehicle (VEH/SIV) or 9-THC (THC/SIV). VEH/SIV but not THC/SIV RMs showed significant enrichment of genes linked to anti-viral defense, interferon-beta, NFkB, RIG-1, and JAK-STAT signaling. We focused on the anti-endoplasmic reticulum (WFS1) and anti-oxidative stress (CRYM) proteins that were significantly downregulated in BG of VEH/SIV RMs. Both proteins localized to the BG neurons, and showed differential expression in the BG of THC/SIV and VEH/SIV RMs. Additionally, inflammation-associated miR-155 and miR-142-3p showed significantly higher expression in the BG of VEH/SIV RMs. In human primary HCN2 neuronal cells, miR-142-3p post-transcriptionally downregulated WFS1. These findings strongly support a role for differential miRNA expression associated with HIV/SIV induced neurological dysfunction.
Project description:The study describes miRNA expression in Gingival tissue of chronically SIV-infected rhesus macaques. HIV/SIV-associated periodontal disease (gingivitis/periodontitis) (PD) represents a major comorbidity affecting HIV patients on anti-retroviral therapy. Employing a systems biology approach, we report molecular changes underlying PD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (9-THC)] in uninfected and SIV-infected rhesus macaques (RMs) untreated (VEH-untreated/SIV) or treated with vehicle (VEH/SIV) or 9-THC (THC/SIV). VEH- untreated/SIV but not THC/SIV RMs showed significant enrichment of genes linked to anti-viral defense, interferon-beta, NFkB, RIG-1, and JAK-STAT signaling. We focused on the anti-microbial DUOX1 and immune activation marker IDO1 that were reciprocally regulated in gingiva of VEH-untreated/SIV RMs. Both proteins localized to the gingival epithelium and CD163+ macrophages, and showed differential expression in the gingiva of THC/SIV and VEH/SIV RMs. Additionally, inflammation-associated miR-21, miR-142-3p, miR-223, and miR-125a-5p showed significantly higher expression in the gingiva of VEH/SIV RMs. In human primary gingival epithelial cells, miR-125a-5p post-transcriptionally downregulated DUOX1 These findings strongly support a role for differential miRNA expression associated with HIV/SIV induced gingival mucosal dysfunction.
Project description:The study describes miRNA expression in colon tissue following delta 9 tetrahydrocannabinol (Δ9-THC) administration to chronically SIV-infected rhesus macaques. To identify the underlying molecular mechanisms underlying its anti-inflammatory effects, we simultaneously profiled miRNA and mRNA expression in colon of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) administered either vehicle (VEH/SIV; n=9) or Δ9- tetrahydrocannabinol (THC; THC/SIV; n=8). Relative to controls, differentially expressed miRNAs were ~2 fold higher in VEH/SIV than THC/SIV RMs. Proinflammatory miR-130a, miR-222 and miR-29b, Lipopolysaccharide-responsive miR-146b-5p and SIV-induced miR-190b were significantly upregulated in VEH/SIV RMs. Compared to VEH/SIV RMs, 10 miRNAs were significantly upregulated in THC-SIV RMs, among which miR-204 was confirmed to directly target MMP8, an extracellular matrix-degrading collagenase that was significantly downregulated in THC/SIV RMs. Moreover, THC/SIV RMs failed to upregulate proinflammatory miR-21, miR-141 and miR-222 and alpha/beta defensins, suggesting attenuated intestinal inflammation. Further, THC/SIV RMs showed higher expression of tight junction proteins (occludin, claudin-3), anti-inflammatory MUC13, keratin-8 (stress protection), PROM1 (epithelial proliferation) and anti-HIV CCL5. Trichrome mason staining detected significant collagen deposition (fibrosis) in the paracortex and B cell follicular zones of axillary lymph nodes from all VEH/SIV but none of the THC/SIV RMs, thus demonstrating the ability of THC to prevent lymph node fibrosis, a serious irreversible consequence of HIV induced chronic inflammation. Furthermore, using flow cytometry, we showed that THC suppressed intestinal T cell proliferation/activation (Ki67/HLADR) and exhaustion (PD1) and increased the percentages of anti-inflammatory CD163+ macrophages. Finally, while THC did not affect CD4+ T cell levels, it significantly reduced CD8+ T cell percentages in blood at 150 and 180 days post SIV infection. These translational findings strongly support a role for differential miRNA/gene induction and T cell activation in THC-mediated suppression of intestinal inflammation in HIV/SIV and potentially other chronic inflammatory diseases of the intestine.
Project description:Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing.
Project description:Question Addressed: Does gene expression change in the buccal mucosa of Lymphocryptovirus (LCV) infected animals when they are chronically infected with Simian immunodeficiency virus (SIV)? Oropharyngeal mucosal tissue samples were collected from rhesus macaques. A pooled common reference was used for all hybridizations. This reference was composed of RNA harvested from rhesus macaques not infected with either LCV or SIV. Infection: Animals were infected with SIV and/or LCV
Project description:The study describes miRNA expression in intact duodenum following chronic delta 9 tetrahydrocannabinol (Δ9-THC) administration to SIV-infected rhesus macaques. Chronic Δ9-THC administration to uninfected macaques significantly and positively modulated intestinal miRNA expression by increasing the total number of differentially expressed miRNAs from 14 to 60 days post infection (DPI). At 60DPI, ~28% of miRNAs showed decreased expression in VEH/SIV compared to none in the THC/SIV group. Furthermore, compared to the VEH/SIV group, THC selectively upregulated the expression of miR-10a, miR-24, miR-99b, miR-145, miR-149 and miR-187 previously shown to target proinflammatory molecules. NOX4, a potent reactive oxygen species generator was confirmed as a direct miR-99b target. A significant increase in NOX4+ crypt epithelial cells was detected in VEH/SIV compared to the THC/SIV group. We speculate that miR-99b-mediated NOX4 downregulation may protect the intestinal epithelium from oxidative stress-induced damage.
Project description:The study describes miRNA expression in intact duodenum following chronic delta 9 tetrahydrocannabinol (M-NM-^T9-THC) administration to SIV-infected rhesus macaques. Chronic M-NM-^T9-THC administration to uninfected macaques significantly and positively modulated intestinal miRNA expression by increasing the total number of differentially expressed miRNAs from 14 to 60 days post infection (DPI). At 60DPI, ~28% of miRNAs showed decreased expression in VEH/SIV compared to none in the THC/SIV group. Furthermore, compared to the VEH/SIV group, THC selectively upregulated the expression of miR-10a, miR-24, miR-99b, miR-145, miR-149 and miR-187 previously shown to target proinflammatory molecules. NOX4, a potent reactive oxygen species generator was confirmed as a direct miR-99b target. A significant increase in NOX4+ crypt epithelial cells was detected in VEH/SIV compared to the THC/SIV group. We speculate that miR-99b-mediated NOX4 downregulation may protect the intestinal epithelium from oxidative stress-induced damage. Twelve age and weight matched male Indian rhesus macaques were randomly divided into 4 groups. Group 1 (n=1) received vehicle (1:1:18 of emulphor : alcohol : saline) and no infection. Group 2 (THC only, n=3) animals received twice daily intramuscular injections of M-NM-^T9-THC and no infection. Group-3 THC/SIV, (n=4) animals received twice daily injections of vehicle and were infected intravenously with 100TCID50 of SIVmac251. Group-4 (VEH/SIV, n=4) animals received twice daily injections of M-NM-^T9-THC similar to group 1 for four weeks prior to SIV infection. Duodenal pinch biopsies were collected before infection and thereafter at 14 and 30 days post infection. All animals were necropsied at 60 days post SIV infection. ~100 ng of total RNA was first reverse transcribed and preamplified according to the manufacturerM-bM-^@M-^Ys recommendation. microRNA expression profiling was performed using TaqMan M-BM-.OpenArrayM-BM-. Human microRNA panels. Data analysis was performed using ExpressionSuiteM-BM-. software. Data was normalized to three endogenous controls (RNU44, RNU48 and snoU6). Delta CT values were calculated by subtracting individual miRNA CT values from an average of all three endogenous controls. Comparisons were made between preinfection and all three treatment groups at 14, 30 and 60 DPI. To determine the effect of chronic THC treatment during SIV infection, comparisons were also made between VEH/SIV and THC/SIV at all three time points.
Project description:HIV/SIV-associated periodontal disease (gingivitis/periodontitis) (PD) represents a major comorbidity affecting HIV patients on anti-retroviral therapy. Employing a systems biology approach, we report molecular changes underlying PD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (THC)] in uninfected and SIV-infected rhesus macaques (RMs) treated with vehicle (VEH/SIV) or THC (THC/SIV). VEH/SIV but not THC/SIV RMs showed significant enrichment of genes linked to anti-viral defense, interferon-beta, NFkB, RIG-1, and JAK-STAT signaling. We focused on the anti-microbial DUOX1 and immune activation marker IDO1 that were reciprocally regulated in gingiva of VEH/SIV RMs. Both proteins localized to the gingival epithelium and CD163+ macrophages, and showed differential expression in the gingiva of THC/SIV and VEH/SIV RMs. Additionally, inflammation-associated miR-21, miR-142-3p, miR-223, and miR-125a-5p showed significantly higher expression in the gingiva of VEH/SIV RMs. In human primary gingival epithelial cells, miR-125a-5p post-transcriptionally downregulated DUOX1 and THC inhibited IDO1 protein expression through a cannabinoid receptor-2 mediated mechanism. Interestingly, THC/SIV RMs showed relatively reduced plasma levels of kynurenine, kynurenate, and the neurotoxic quinolinate compared to VEH/SIV RMs. Most importantly, THC blocked HIV/SIV-induced depletion of Firmicutes and Bacteroidetes, and reduced Gammaproteobacteria abundance in saliva. Reduced IDO1 protein expression was associated with significantly (p<0.05) higher abundance of Prevotella, Lactobacillus (L. salivarius, L. buchneri, L. fermentum, L. paracasei, L. rhamnosus, L. johnsonii) and Bifidobacteria and reduced abundance of the pathogenic Porphyromonas cangingivalis and Porphyromonas macacae. These translational findings suggest that phytocannabinoids could help reduce gingival/systemic inflammation and salivary dysbiosis in ART naïve and treated HIV individuals.
Project description:This study describes differential miRNA expression in small intestinal lamina propria leukocyte samples longitudinally during the course of SIV infection of rhesus macaques. Notably, the T-cell activation associated miR-15b, miR-142-3p, miR-142-5p and miR-150 expression was significantly downregulated at 90 and 180DPI. Further, reporter and overexpression assays validated IRAK1 as a direct miR-150 target. Furthermore, IRAK1 protein levels were markedly elevated in intestinal LPLs and epithelium. Finally, blockade of CD8+ T-cell activation/proliferation with delta-9 tetrahydrocannabinol (ï9-THC) significantly prevented miR-150 downregulation and IRAK1 upregulation. Our findings suggest that miR-150 downregulation during T-cell activation may disrupt the translational control of IRAK1 facilitating persistent GI inflammation. We performed TaqMan Low Density Array based high throughput miRNA analysis on small intestine tissue from 12 chronically SIV-infected and 4 uninfected control macaques. All SIV-infected animals were inoculated intravenously with 100TCID50 of SIV. Out of the ten, one animal each was at 7, 8 and 10DPI (days post infection), 3 each at 13 and 21DPI, and 1 at 29DPI. microRNA reverse transcription and preamplification was performed according to the manufacturerâs recommendation. Data analysis was performed using RQ Manager 1.2.2 and DataAssist v3.01 software. Data was normalized using Global normalization method and multiple comparisons correction was performed using Benjamini-Hochberg method.