Study on the Mechanism of Codonopsis pilosula Enhancing Immune Function of Aging Mice Based on lncRNA-mRNA Network
Ontology highlight
ABSTRACT: Objective: To explore the molecular mechanism of Codonopsis pilosula in enhancing the immune function of aging mice, the expression profile of long-chain non-coding RNA (lncRNA), mRNA in spleen of mice was detected. Methods: An aging mouse model was established, the aging mice were treated with low, middle and high doses of Codonopsis pilosula, and the aging related indexes, spleen pathology and cellular ultrastructure were detected and analyzed. Then microarray analysis and bioinformatics methods were used to analyze the lncRNA and mRNA expression profile. GO enrichment analysis and KEGG pathway analysis were performed to analyze the differential genes between groups using KOBAS. Finally, the common lncRNAs and mRNAs in high-dose Codonopsis pilosula treatment group compared with the model group and the model group compared with the control group were selected for lncRNA-mRNA co-expression network construction, and real-time quantitative polymerase chain reaction (qRT-PCR) was used to verify the genes in the network. Results: The aging mouse model was successfully established. Codonopsis pilosula can improve the pathology and cellular ultrastructure of spleen in aging mice. Microarray analysis showed that 96 lncRNAs and 65 mRNAs changed significantly after aging, 623 lncRNAs and 435 mRNAs expressed abnormally after high-dose Codonopsis pilosula treatment. KEGG pathways involved in aging and high-dose Codonopsis pilosula treatment are mainly related to immunity, including allograft rejection, graft-versus-host disease, autoimmune thyroid disease, antigen processing and presentation and so on. The three mRNAs (Enpp6, Cped1, and Galnt15) in lncRNA-mRNA co-expression network may be related to Codonopsis pilosula improving the immunity of aging mice, which were verified by qRT-PCR. Conclusion: Codonopsis pilosula has a certain protective effect on the spleen of aging mice and the lncRNA-mRNA network may play an important role in enhancing the immunity of aging mice.
ORGANISM(S): Mus musculus
PROVIDER: GSE150773 | GEO | 2022/05/17
REPOSITORIES: GEO
ACCESS DATA