MM_0565 orchestrates CRISPR-based immunity in Methanosarcina mazei by transcriptional regulation of components essential for the adaptation
Ontology highlight
ABSTRACT: CRISPR loci are found in bacterial and archaeal genomes where they provide the molecular machinery for acquisition of immunity against foreign DNA. In addition to the cas genes fundamentally required for CRISPR activity, a second class of genes is associated with the CRISPR loci, of which many have no reported function in CRISPR-mediated immunity. Here, we characterize MM_0565 of Methanosarcina mazei Gö1 associated to the type I-B CRISPR-locus providing evidence for its relevance in regulating this system. We show that MM_0565 is composed of a modified Rossmann-like fold and a winged helix-turn-helix domain and forms a dimer in solution. While direct effects on CRISPR-Cas transcription were not detected by genetic approaches, binding to the leader region of both CRISPR-Cas systems was observed by microscale thermophoresis and electromobility shift assays. Overexpression of MM_0565 however, strongly induced transcription of the cas1-solo gene located in the recently reported casposon, the gene product of which shows high similarity to classical Cas1 proteins. Based on our findings we hypothesize that Cas1-solo is involved in the adaptation of CRISPR-mediated immunity in M. mazei, and that MM_0565 modulates the activity of the CRISPR systems amongst potential other hypnotized actions by activating the transcription of the cas1-solo gene.
ORGANISM(S): Methanosarcina mazei Go1
PROVIDER: GSE151372 | GEO | 2020/09/08
REPOSITORIES: GEO
ACCESS DATA