Induction of Muscle Regenerative Multipotent Stem Cells from Human Adipocytes by PDGF-AB and 5-Azacytidine [ChIP-seq]
Ontology highlight
ABSTRACT: Terminally differentiated murine osteocytes and adipocytes can be reprogrammed using platelet-derived growth factor–AB and 5-Azacytidine into multipotent stem cells with stromal cell characteristics. To generate a product that is amenable for therapeutic application, we have modified and optimised culture conditions to reprogram human adipocytes into induced multipotent stem cells (iMS) and expand them in vitro. The basal transcriptomes of adipocyte-derived iMS cells and matched adipose-tissue-derived mesenchymal stem cells were remarkably similar. However, there were distinct changes in histone modifications and CpG methylation at cis-regulatory regions consistent with an epigenetic landscape that was primed for tissue development and differentiation. In a non-specific tissue injury xenograft model, iMS cells contributed directly to new muscle, bone, cartilage and blood vessels with no evidence of teratogenic potential. In a cardiotoxin muscle injury model, iMS cells contributed specifically to satellite cells and myofibres without ectopic tissue formation. Taken together, human adipocyte derived iMS cells regenerate tissues in a context dependent manner without ectopic or neoplastic growth.
ORGANISM(S): Homo sapiens
PROVIDER: GSE151525 | GEO | 2021/02/08
REPOSITORIES: GEO
ACCESS DATA