NdpA2 & TprA regulon in PA14: ICE PAPI-1 transference induced (M0) vs Control (Tn38)
Ontology highlight
ABSTRACT: Transcriptional profiling of Pseudomonas aeruginosa PA14 comparing T4SS-GI induced biosynthesis M0 strain with control wild type phentoype Tn38 strain The PA14_59050-59120 locus was overexpressed through chromosomal insertion of ptac promoter within PA14_59030 gene.
Project description:Transcriptional profiling of Pseudomonas aeruginosa PA14 comparing T4SS-GI induced biosynthesis M0 strain with control T4SS-GI induced biosynthesis M0-59060-stop strain. The PA14_59050-59120 locus was overexpressed through chromosomal insertion of ptac promoter within PA14_59030 gene.
Project description:P. aeruginosa PA14 mutant strain PA4496 expression in biofilm cells relative to PA14 wild-type strain expression in biofilm cells. All samples cultured in LB with glass wool
Project description:The previously uncharacterized proteins HigB (unannotated) and HigA (PA4674) of Pseudomonas aeruginosa PA14 were found to form a type II TA system in which antitoxin HigA masks the RNase activity of toxin HigB through direct binding. To determine the physiological role of HigB/HigA in P. aeruginosa, a whole-transcriptome experiment was performed for the higA antitoxin deletion mutant of the PA14 strain compared to the wild-type PA14 strain. The rationale was that for the strain that lacks the antitoxin, the effect of the toxin could be discerned due to enhanced activity of the toxin. Furthermore, toxin HigB reduces production of the virulence factors pyochelin, pyocyanin, swarming, and biofilm formation.
Project description:Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. Genome sequences reveal that most P. aeruginosa strains contain a significant number of accessory genes gathered in genomic islands. Those genes are essential for P. aeruginosa to invade new ecological niches with high levels of antibiotic usage, like hospitals, or to survive during host infection by providing pathogenicity determinants. P. aeruginosa pathogenicity island 1 (PAPI-1), one of the largest genomic islands, encodes several putative virulence factors, including toxins, biofilm genes and antibiotic-resistance traits. The integrative and conjugative element (ICE) PAPI-1 is horizontally transferable by conjugation via a specialized GI-T4SS, but the mechanism regulating this transfer is currently unknown. Here, we show that this GI-T4SS conjugative machinery is directly induced by TprA, a regulator encoded within PAPI-1. Our data indicate that the nucleotide associated protein NdpA2 acts in synergy with TprA, removing a repressive mechanism exerted by MvaT. In addition, using a transcriptomic approach, we unravelled the regulon controlled by Ndpa2/TprA and showed that they act as major regulators on the genes belonging to PAPI-1. Moreover, TprA and NdpA2 trigger an atypical biofilm structure and enhance ICE PAPI-1 transfer.
Project description:Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and severe chronic lung infections in cystic fibrosis patients. The reference strains PA14 and PAO1 have been studied extensively, revealing that PA14 is more virulent than PAO1 in diverse infection models. Among other factors, this may be due to two pathogenicity islands, PAPI-1 and PAPI-2, both present in PA14 but not in PAO1. We compared the global contributions to virulence of PAPI-1 and PAPI-2, rather than that of individual island-borne genes, using murine models of acute pneumonia and bacteremia. Three isogenic island-minus mutants (PAPI-1-minus, PAPI-2-minus, and PAPI-1-minus, PAPI-2-minus mutants) were compared with the wild-type parent strain PA14 and with PAO1. Our results showed that both islands contributed significantly to the virulence of PA14 in acute pneumonia and bacteremia models. However, in contrast to the results for the bacteremia model, where each island was found to contribute individually, loss of the 108-kb PAPI-1 island alone was insufficient to measurably attenuate the mutant in the acute pneumonia model. Nevertheless, the double mutant was substantially more attenuated, and exhibited a lesser degree of virulence, than even PAO1 in the acute pneumonia model. In particular, its ability to disseminate from the lungs to the bloodstream was markedly inhibited. We conclude that both PAPI-1 and PAPI-2 contribute directly and synergistically in a major way to the virulence of PA14, and we suggest that analysis of island-minus strains may be a more appropriate way than individual gene knockouts to assess the contributions to virulence of large, horizontally acquired segments of DNA.
Project description:Analysis of differential gene expression in C. elegans adults exposed to three different bacteria: E. coli strain OP50, wild-type P. aeruginosa PA14 and gacA mutant PA14. Samples were analyzed at 4 hours and 8 hours after exposure to the different bacteria. These studies identified C. elegans genes induced by pathogen infection. Keywords: Time course, response to pathogen infection