MicroRNA array data for forensically relevant body fluids samples
Ontology highlight
ABSTRACT: Identifying the type and origin of biological samples left at a crime scene is crucial in forensic investigations as it can provide important clues for crime scene reconstruction and linkages between victim/perpetrator/scene. MicroRNAs (miRNAs) are considered to be more stable than mRNA due to their small size and protection by protein and have been demonstrated to be a viable tool for body fluid identification in forensic casework. To screen reliable body-fluid specific miRNAs, ten arrays were performed in five body fluids (peripheral blood, menstrual blood, saliva, semen and vaginal secretion). Two arrays were carried out for each body fluid: three samples for the first and the other two for the second (for menstrual blood, the second array detected three samples).
ORGANISM(S): Mus musculus Rattus norvegicus Homo sapiens
Project description:The ability to predict tissue type and donor’s age from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid- and age-associated DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including blood, saliva, semen, menstrual blood, and vaginal fluid obtained from individuals aged 20 to 59. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 12 of each blood, saliva and semen samples from 18 male donors aged 20 to 59, and 3 of each vaginal fluid and menstrual blood samples from 4 female donors in their twenties.
Project description:The ability to predict tissue type and donor’s age from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid- and age-associated DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including blood, saliva, semen, menstrual blood, and vaginal fluid obtained from individuals aged 20 to 59. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 12 of each blood, saliva and semen samples from 18 male donors aged 20 to 59, and 3 of each vaginal fluid and menstrual blood samples from 4 female donors in their twenties.
Project description:The ability to predict tissue type and donor’s age from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid- and age-associated DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including blood, saliva, semen, menstrual blood, and vaginal fluid obtained from individuals aged 20 to 59. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 12 of each blood, saliva and semen samples from 18 male donors aged 20 to 59, and 3 of each vaginal fluid and menstrual blood samples from 4 female donors in their twenties.
Project description:Forensic body fluid identification is important for crime scene reconstruction. We used Illumina HumanMethylation 450K bead array containing over the 450,000 CpG sites in 16 body fluid samples to find novel DNA methylation marker for forensic body fluid identification.
Project description:The ability to predict tissue type and donor’s age from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid- and age-associated DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including blood, saliva, semen, menstrual blood, and vaginal fluid obtained from individuals aged 20 to 59. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 12 of each blood, saliva and semen samples from 18 male donors aged 20 to 59, and 3 of each vaginal fluid and menstrual blood samples from 4 female donors in their twenties. Genome-wide DNA methylation profiling of body fluids obtained from young and old individuals. The Illumina Infinium 450K Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450K CpGs from human body fluids including blood, saliva, semen, vaginal fluid and menstrual blood. Bisulfite converted DNA from the 24 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:Forensic body fluid identification is important for crime scene reconstruction. We used Illumina HumanMethylation 450K bead array containing over the 450,000 CpG sites in 16 body fluid samples to find novel DNA methylation marker for forensic body fluid identification. Examination of genome-wide DNA methylation profiling in 16 body fluid samples
Project description:The ability to predict tissue type and donor’s age from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid- and age-associated DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including blood, saliva, semen, menstrual blood, and vaginal fluid obtained from individuals aged 20 to 59. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 12 of each blood, saliva and semen samples from 18 male donors aged 20 to 59, and 3 of each vaginal fluid and menstrual blood samples from 4 female donors in their twenties. Genome-wide DNA methylation profiling of body fluids obtained from individuals aged 29 to 41. The Illumina Infinium 450K Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450K CpGs from human body fluids including blood, saliva and semen. Bisulfite converted DNA from the 6 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:The ability to predict tissue type and donor’s age from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid- and age-associated DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including blood, saliva, semen, menstrual blood, and vaginal fluid obtained from individuals aged 20 to 59. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 12 of each blood, saliva and semen samples from 18 male donors aged 20 to 59, and 3 of each vaginal fluid and menstrual blood samples from 4 female donors in their twenties. Genome-wide DNA methylation profiling of body fluids obtained from individuals aged 37 to 48. The Illumina Infinium 450K Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450K CpGs from human body fluids including blood, saliva and semen. Bisulfite converted DNA from the 12 samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:The ability to predict the type of tissues or cells from molecular profiles of crime scene samples has practical implications in forensics. In order to identify body fluid-specific DNA methylation changes, genome-wide DNA methylation profiling was carried out for body fluids including menstrual blood and vaginal fluid obtained from 3 female donors aged 19, 27 and 38 years. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in bisulfite converted DNA. Samples included 3 of each vaginal fluid and menstrual bloods collected on the first, second and third days of menstrual bleeding.
Project description:Body-fluid specific marker provide important information for crime scene, but some marker such as mRNA and protein can provide wrong information because cross-reaction. We used microarrays to identify body-fluid specific miRNA marker for forensic use.