The beating cluster of adipose tissue-derived stromal cells
Ontology highlight
ABSTRACT: Adipose tissue-derived stromal vascular fraction (Ad-SVF) contains stem cells and rarely transdifferentiate into spontaneously beating cardiomyocyte-like cells (beating CMs). However, the factors that regulate the differentiation of Ad-SVF into the cardiac lineage is unknown. We developed a simple culture protocol under which the adult murine inguinal Ad-SVF reproducibly transdifferentiates into beating CMs without induction. We used microarray analyses to evaluate the global gene expressions of the beating CMs and investigated the mechanism underlying the transdifferentiation of SVF cells into CMs.
Project description:The direct conversion, or trans-differentiation, of non-cardiac cells into cardiomyocytes by forced expression of transcription factors and microRNAs provide promising ways of cardiac regeneration. However, genetic manipulations are still not desirable in real clinical applications. we report the generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts with only chemical cocktails. These chemical-induced cardiomyocyte-like cells (CiCMs) express cardiomyocyte-specific markers, exhibit sarcomeric organization, and possess typical cardiac calcium flux and electrophysiological features. Microarray-bassed gene expression patterns of Mouse embryonic fibroblasts (MEFs), CiCMs, and cardiomyocytes(CMs) indicated a clear transition from dividing MEFs to differentiated cardiomyocyte-like state in CiCM samples. Mouse embryonic fibroblasts were treated with a small-molecule combination CRFVPT (10 μM CHIR99021 (C); 10 μM RepSox (R); 50 μM Forskolin (F); 0.5 mM VPA (V); 5 μM Parnate, (P); 1 μM TTNPB (T)) to induce transdifferentiation to chemical-induced cardiomyocyte-like cells. CiCMs beating clusters were picked at day 24 for analysis. MEFs were isolated from mouse embryos, and CMs were isolated from mouse hearts. Total RNA of MEFs, CiCMs and CMs were extracted and hybridization on Affymetrix microarrays.
Project description:In our study, for identify the Myod-lineage precursor cells from inguinal WAT, the Myod-Cre; mTmG reporter mice were used. GFP+ (Myod-lineage) SVF progenitor cells from inguinal WAT (pooled from 3 animals) were sorted by FACS sorting, and plate in cell culture for total RNA isolation; as comparison, the Tomato+ SVF progenitor cells from the same tissue (pooled from 3 animals) were sorted by FACS sorting for total RNA isolation.
Project description:Since the human prostate does not undergo replicative senescence but rather undergoes transdifferentiation with increasing age, we investigated the molecular profile of prostate fibroblasts induced to transdifferentiate in response to TGF-b1.
Project description:To assess the influences of a crude medicinal herb extract (MHE) on the immune composition and function in inguinal white adipose tissue (iWAT), we isolated iWAT stromal vascular fractions (SVFs) from control (PBS) and MHE-treated mice and performed RNA-seq analysis. iWAT SVF of mice treated with MHE was defined as the treatment group. Phosphate-buffered saline (PBS) treatment was used as the control group. Then RNA-Seq experiment was performed by OE Biotech Co., Ltd. (Shanghai, China) to analyze gene expression changes in iWAT SVF.
Project description:MyoD is known to transdifferentiate fibroblasts into muscle-like cells. Despite phenotypic resemblance and expression of myogenic marker genes in transdifferentiated cells, our global gene expression data suggests that ~100 genes, many involved in muscle development and function, remain non-reprogrammed. To understand this incomplete reprogramming, we characterized genome-wide chromatin accessibility and MyoD binding in human primary myoblasts and in MyoD-induced skin fibroblast cells. Our analyses revealed thousands of sites with incomplete chromatin reprogramming.Combined analyses of gene expression and epigenetic profiles revealed that many myogenic genes not upregulated during the transdifferentiation process have undergone MyoD-dependent chromatin remodeling, but to a significantly lower extent than reprogrammed genes. Our findings suggest that incomplete MyoD-induced transdifferentiation is due to chromatin-remodeling deficiencies, and that additional factors are required to transdifferentiate cells into a state more similar to myoblasts.
Project description:MyoD is known to transdifferentiate fibroblasts into muscle-like cells. Despite phenotypic resemblance and expression of myogenic marker genes in transdifferentiated cells, our global gene expression data suggests that ~100 genes, many involved in muscle development and function, remain non-reprogrammed. To understand this incomplete reprogramming, we characterized genome-wide chromatin accessibility and MyoD binding in human primary myoblasts and in MyoD-induced skin fibroblast cells. Our analyses revealed thousands of sites with incomplete chromatin reprogramming.Combined analyses of gene expression and epigenetic profiles revealed that many myogenic genes not upregulated during the transdifferentiation process have undergone MyoD-dependent chromatin remodeling, but to a significantly lower extent than reprogrammed genes. Our findings suggest that incomplete MyoD-induced transdifferentiation is due to chromatin-remodeling deficiencies, and that additional factors are required to transdifferentiate cells into a state more similar to myoblasts.
Project description:MyoD is known to transdifferentiate fibroblasts into muscle-like cells. Despite phenotypic resemblance and expression of myogenic marker genes in transdifferentiated cells, our global gene expression data suggests that ~100 genes, many involved in muscle development and function, remain non-reprogrammed. To understand this incomplete reprogramming, we characterized genome-wide chromatin accessibility and MyoD binding in human primary myoblasts and in MyoD-induced skin fibroblast cells. Our analyses revealed thousands of sites with incomplete chromatin reprogramming.Combined analyses of gene expression and epigenetic profiles revealed that many myogenic genes not upregulated during the transdifferentiation process have undergone MyoD-dependent chromatin remodeling, but to a significantly lower extent than reprogrammed genes. Our findings suggest that incomplete MyoD-induced transdifferentiation is due to chromatin-remodeling deficiencies, and that additional factors are required to transdifferentiate cells into a state more similar to myoblasts.
Project description:Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) or directly reprogrammed from non-myocytes (induced cardiomyocytes, iCMs) are promising sources for heart regeneration or disease modeling. However, the similarities and differences between iPSC-CM and iCM are still unknown. Here we performed transcriptome analyses of beating iPSC-CMs and iCMs generated from cardiac fibroblasts (CFs) of the same origin. Although both iPSC-CMs and iCMs establish CM-like molecular features globally, iPSC-CMs exhibit a relatively hyperdynamic epigenetic status while iCMs exhibit maturation status that more resemble adult CMs. Based on gene expression of metabolic enzymes, iPSC-CMs primarily employ glycolysis while iCMs utilize fatty acid oxidation as the main pathway. Importantly, iPSC-CMs and iCMs exhibit different cell cycle status, alteration of which influenced their maturation. Therefore, our study provides a foundation for understanding the pros and cons of different reprogramming approaches.
Project description:Analysis of inguinal white adipose tissue (WAT) isolated from wildtype (WT) and Notch1 overexpression mice (Ad/NICD). Results provide insight into molecular mechanisms underlying lipodystrophy of Ad/NICD mice