Fusion protein EWS-FLI1 is incorporated into a protein granule in cells
Ontology highlight
ABSTRACT: Ewing sarcoma is driven by fusion proteins containing a low complexity (LC) domain that is intrinsically disordered and a powerful transcriptional regulator. The most common fusion protein found in Ewing sarcoma, EWS-FLI1, takes its LC domain from the RNA-binding protein EWSR1 (Ewing Sarcoma RNA-binding protein 1) and a DNA-binding domain from the transcription factor FLI1 (Friend Leukemia Virus Integration 1). The LC domain in EWS-FLI1 can bind RNA polymerase II (RNA Pol II) and can self-assemble through a process known as phase separation. The ability of EWSR1 and related RNA-binding proteins to assemble into ribonucleoprotein granules in cells has been intensely studied but the role of phase separation in EWS-FLI1 activity is less understood. We investigated the overlapping functions of EWSR1 and EWS-FLI1 in controlling gene expression and tumorigenic cell growth in Ewing sarcoma, and our results suggested that these proteins function closely together. We then studied the nature of interactions among EWS-FLI1, EWSR1, and RNA Pol II. We observed EWSR1 and RNA Pol II to be present in protein granules in cells. We then identified protein granules in cells associated with the fusion protein, EWS-FLI1. The tyrosine residues in the LC domain are required for the abilities of EWS-FLI1 to bind its partners, EWSR1 and RNA Pol II, and to incorporate into protein granules. These data suggest that interactions among EWS-FLI1, RNA Pol II, and EWSR1 in Ewing sarcoma can occur in the context of a molecular scaffold found within protein granules in the cell.
ORGANISM(S): Homo sapiens
PROVIDER: GSE154944 | GEO | 2020/07/23
REPOSITORIES: GEO
ACCESS DATA