Combined blockade of B7-H3 and CD47 immune checkpoints is a new therapeutic strategy for β-catenin driven melanomas [transfection]
Ontology highlight
ABSTRACT: In melanoma, immune cell infiltration into the tumor is associated with better patient outcomes and response to immunotherapy. T cell non-inflamed tumors (‘cold tumors’) are associated with tumor cell intrinsic Wnt/β-catenin activation, and are resistant to anti-PD-1 alone or in combination with anti-CTLA-4 therapy. Reversal of the ‘cold tumor’ phenotype and identifying new effective immunotherapies are challenges in melanoma. In a well-established preclinical melanoma model driven by β-catenin, we found that immune checkpoint molecule B7-H3 confers a suppressive tumor microenvironment by modulating antiviral signals and matricellular proteins. Its inhibition primes the microenvironment, and together with blockade of the macrophage checkpoint CD47, but not with anti-PD-1, results in synergistic anti-tumor responses. This study brings B7-H3 to the forefront as inducing a suppressive microenvironment when overexpressed, and co-targeting with CD47 as a novel combination of immune checkpoint inhibitors in melanoma that calls for testing in clinical trials.
ORGANISM(S): Homo sapiens
PROVIDER: GSE155394 | GEO | 2023/10/30
REPOSITORIES: GEO
ACCESS DATA