Modifying macrophages at the periphery has the capacity to change microglial reactivity and increase ALS survival
Ontology highlight
ABSTRACT: Microglia and peripheral macrophages, combined, have been implicated in the motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but without discriminating their respective roles. We now show that macrophages along peripheral motor neuron axons of ALS mice and patients react to neurodegeneration. In ALS mice, peripheral myeloid cell infiltration into the spinal cord was limited and disease duration dependent. Targeted gene modulation of the reactive oxygen species pathway in peripheral myeloid cells of ALS mice, using cell replacement, reduced both peripheral macrophage and microglial activation, delayed symptoms and increased ALS mouse survival. Transcriptomics revealed that sciatic nerve macrophages and microglia reacted very different to neurodegeneration, with abrupt temporal changes in macrophages and progressive, unidirectional activation in microglia. Modifying peripheral macrophages suppressed proinflammatory microglial responses, with a strong shift towards neuronal support. Thus, modifying macrophages at the periphery has the capacity to influence disease progression and is of therapeutic value for ALS.
Project description:Purpose: We purified spinal cord microglia utilizing percoll gradients and magnetic beads, followed by transcriptome profiling (RNA-seq) to define microglia expression profiles against other neural, immune cell-types. We next observed how the microglial transcriptomes change during activation in the SOD1-G93A mouse model of motor neuron degeneration at 3 time points. We also compared these profiles with that induced by LPS injection. Results and conclusions: ALS microglia were found to differ substantially from those activated by LPS and from M1/M2 macrophages by comparison with published datasets. These ALS microglia showing substantial induction of a neurodegeneration-tailored phenotype, with induction of lysosomal, RNA splicing, and Alzheimer's disease pathway genes. Overall they express a mixture of neuroprotective and neurotoxic factors during activation in ALS mice, showing that neuro-immune activation in the spinal cord is a double-edged sword. We also detected the transcriptional nature of surface marker expression in microglia (CD11b, CD86, CD11c), and substantial T-cell microglia cross-talk using correlative microglia transcriptome/FACS analysis. 42 total RNA samples from purified spinal cord microglia were subjected to paired-end RNA-sequencing. Parallel flow cytometry data was collected from the same spinal cords.
Project description:Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting loss of function may play a role in disease. We find that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS patient tissue. Thus, C9orf72 is required for normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers.
Project description:Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, with additional pathophysiological involvement of non-neuronal cells such as microglia. The commonest ALS-associated genetic variant is a hexanucleotide repeat expansion (HRE) mutation in C9orf72. Here, we study its consequences for microglial function using human iPSC-derived microglia. By RNA-sequencing, we identify enrichment of pathways associated with immune cell activation and cyto-/chemokines in C9orf72 HRE mutant microglia versus healthy controls, most prominently after LPS priming. Specifically, LPS-primed C9orf72 HRE mutant microglia show consistently increased expression and release of matrix metalloproteinase-9 (MMP9). LPS-primed C9orf72 HRE mutant microglia are toxic to co-cultured healthy motor neurons, which is ameliorated by concomitant application of an MMP9 inhibitor. Finally, we identify release of dipeptidyl peptidase-4 (DPP4) as a marker for MMP9-dependent microglial dysregulation in co-culture. These results demonstrate cellular dysfunction of C9orf72 HRE mutant microglia, and a non-cell-autonomous role in driving C9orf72-ALS pathophysiology in motor neurons through MMP9 signaling.
Project description:Purpose: We purified spinal cord microglia utilizing percoll gradients and magnetic beads, followed by transcriptome profiling (RNA-seq) to define microglia expression profiles against other neural, immune cell-types. We next observed how the microglai transcriptomes change during activation in the SOD1-G93A mouse model of motor neuron degeneration at 3 timepoints. We also compared these profiles with that induced by LPS injection. Results and conclusions: ALS microglia were found to differ substantially from those activated by LPS and from M1/M2 macrophages by comparison with published datasets. These ALS microglia showing substantial induction of a "neurodegeneration-tailored phenotype", with induction of lysosomal, RNA splicing, and Alzheimer's disease pathway genes. Overall they express a mixture of neuroprotective and neurotoxic factors during activation in ALS mice, showing that neuro-immune activation in the spinal cord is a double-edged sword. We also detected the transcriptional nature of surface marker expression in microglia (CD11b, CD86, CD11c), and substantial T-cell microglia cross-talk using correlative microglia transcriptome/FACS analysis.
Project description:Gene expression profiling has been performed on motor cortex and spinal cord homogenates and of sporadic ALS cases and controls, to identify genes and pathways differentially expressed in ALS. More recent studies have combined the use of laser capture microdissection (LCM) with gene expression profiling to isolate the motor neurons from the surrounding cells, such as microglia and astrocytes, in order to determine those genes differentially expressed in the vulnerable cell population â i.e. motor neuron. The aim of this study was to determine the gene expression profiles from a small subset of cases which all carry mutations in the CHMP2B gene. These mutations have been found to be associated with the lower motor neuron dominant variant of ALS. Expression profiles from isolated motor neurons in CHMP2B-related ALS cases were compared to those from control motor neurons, in order to establish the pathways implicated in CHMP2B-related motor neuronal cell death.
Project description:The most common genetic mutation found in familial and sporadic amyotrophic lateral sclerosis (ALS), as well as fronto-temporal dementia (FTD), is a repeat expansion in the C9orf72 gene. C9orf72 is highly expressed in human myeloid cells, and although neuroinflammation and microglial pathology are widely found in ALS/FTD, the underlying mechanisms are poorly understood. Here, using human induced pluripotent stem cell-derived microglia-like cells (hiPSC-MG) harbouring C9orf72 mutation (mC9-MG) together with gene-corrected isogenic controls (isoC9-MG) and C9ORF72 knock-out hiPSC-MG (C9KO-MG), we show that reduced C9ORF72 protein is associated with impaired phagocytosis and an exaggerated inflammatory response upon stimulation with lipopolysaccharide, driven by sustained activation of NLRP3 inflammasome and NF-kB signalling. Analysis of the hiPSC-MG C9ORF72 interactome revealed an association of C9ORF72 with key regulators of autophagy, a process involved in the homeostatic regulation of the innate immune response. We found impaired initiation of autophagy in C9KO-MG and mC9-MG. Furthermore, through motor neuron-microglial (MN-MG) co-culture studies, we identified that autophagy deficit in mC9-MG led to increased vulnerability of C9 MNs to excitotoxic stimulus. Pharmacological activation of autophagy ameliorated the sustained activation of NLRP3 inflammasome and NF-B signalling, reversed the phagocytic deficit found in mC9-MG and also reduced MN death in MN-MG co-cultures. We validated these findings in blood-derived macrophages from people with C9orf72 mutation. Our results reveal an important role for C9ORF72 in regulating microglial immune homeostasis and identify dysregulation in human myeloid cells as a contributor to neurodegeneration in ALS/FTD
Project description:Triggering receptor expressed on myeloid cell 2 (TREM2) is linked to neurodegenerative disease risk. However, the function of TREM in neurodegeneration is still unclear. Here we investigated the role of microglial TREM2 in TAR-DNA binding protein 43 kDa (TDP-43)-related neurodegeneration using viral-mediated and transgenic mouse models. We found that TREM2 deficiency impaired phagocytic clearance of pathological TDP-43 by microglia, and enhanced neuronal damage and motor impairments. Mass cytometry analysis revealed that hTDP-43 induced a TREM2-dependent subpopulation of microglia with high CD11c expression and phagocytic ability. Using mass spectrometry and surface plasmon resonance analysis, we further demonstrated an interaction between TDP-43 and TREM2 in vitro and in vivo as well as in ALS patient tissues. We computationally identified the region within hTDP-43 that interacts with TREM2. Our data highlights that TDP-43 is a possible ligand for microglial TREM2 and that this interaction mediates neuroprotection effects of microglia in TDP-43-related neurodegeneration.
Project description:Abnormal accumulation of aggregated proteins and sustained microglial activation are important contributors of neurodegenerative process in neurological diseases. Recent studies have shown that aggregation-prone proteins, such as a-synuclein, the protein implicated in Parkinson’s disease (PD), are released from neuronal cells and thus present in the extracellular fluid, pointing to the possible paracrine effects of these proteins on microglial immune responses. However, the mechanism underlying the disease-associated microglial activation and the role of neuronal proteins in this process remain unknown. Here, we show that extracellular a-synuclein released from neuronal cells is an endogenous ligand of toll-like receptor 2 (TLR2) and activates microglia, which in turn induces neurodegeneration. Interaction between neuron-released a-synuclein and TLR2 and subsequent activation of the TLR2 signaling were demonstrated comprehensively by using computational modeling of signaling network and by the experimental validation in TLR2-deficient microglia both in vitro and in vivo. In contrast to the neuron-released a-synuclein, recombinant a-synuclein proteins, including monomer, oligomer, fibril, or nitrated forms, were not able to interact or activate TLR2, suggesting that neuronal cells have a mechanism of enriching specific forms of a-synuclein capable of activating TLR2 during the process of releasing this protein. Taken together, the results suggest that both neuron-released extracellular a-synuclein and TLR2 might be novel therapeutic targets for modifying neuroinflammation in PD and related neurodegenerative diseases. We collected culture media from differentiated SH-SY5Y cells overexpressing either human a-synuclein (alpha-SCM) or beta-galactosidase (LZCM) and treat these media to primary rat microglia at the concentration of a-synuclein of 1.1M. Transcriptome analyses with microglial cells treated with either aSCM or LZCM at two different time points, 6 h and 24 h.
Project description:Neuroinflammation is an important hallmark in amyotrophic lateral sclerosis (ALS). Experimental evidence has highlighted a role of microglia in the modulation of motor neuron degeneration. However, the exact contribution of microglia to both sporadic and genetic forms of ALS is still unclear. We generated single nuclei profiles of spinal cord and motor cortex from sporadic and C9orf72 ALS patients, as well as controls. We particularly focused on the transcriptomic responses of both microglia and astrocytes. We confirmed that C9orf72 is highly expressed in microglia and shows a diminished expression in carriers of the hexanucleotide repeat expansion (HRE). This resulted in an impaired response to disease, with specific deficits in phagocytic and lysosomal transcriptional pathways. Astrocytes also displayed a dysregulated response in C9orf72 ALS patients, remaining in a homeostatic state. This suggests that C9orf72 HRE alters a coordinated glial response, which ultimately would increase the risk for developing ALS. Our results indicate that C9orf72 HRE results in a selective microglial loss-of-function, likely impairing microglial-astrocyte communication and preventing a global glial response. This is relevant as it indicates that sporadic and familial forms of ALS may present a different cellular substrate, which is of great importance for patient stratification and treatment.
Project description:Gene expression profiling has been performed previously on motor cortex and spinal cord homogenates and of sporadic ALS cases and controls, to identify genes and pathways differentially expressed in ALS. More recent studies have combined the use of laser capture microdissection (LCM) with gene expression profiling to isolate the motor neurons from the surrounding cells, such as microglia and astrocytes, in order to determine those genes differentially expressed in the vulnerable cell population – i.e. motor neuron. The aim of the present study is to combine LCM and microarray analysis to determine those genes and pathways differentially expressed in MNs from human SOD1-related MND and to establish potential pathways for therapeutic intervention. Keywords: Human motor neurons The aim of this study was to determine the gene expression profiles from a small subset of cases which all carry mutations in the SOD1 gene. Expression profiles from isolated motor neurons in SOD1-related ALS cases were compared to those from control motor neurons, in order to establish the pathways implicated in SOD1-related motor neuronal cell death. The 'control' samples were originally submitted to GEO as GSE19332.