Macrophage infiltration induced by donor hypovolemia protects against severe primary graft dysfunction in mouse lung transplantation
Ontology highlight
ABSTRACT: BACKGROUND: Hypovolemia is common in lung donors before or after brain death. However, its impact on primary graft function (PGD) remains obscure. METHODS: A clinically relevant two-hit model of PGD was established by integrating hypovolemic shock (HS) and cold ischemia-reperfusion in a mouse model of orthotopic lung transplantation (LTx) from C57BL/6 to Balb/c. At -48 hours, HS was induced to donor by withdrawal of blood from femoral artery and keeping the mean arterial pressure at 15±5 mmHg for 4 h. At -24 hours, donor lungs were retrieved from mice with or without HS and stored at 0ºC until transplantation. CD11b-DTR mice were used as donor and treated with Diphtheria Toxin (DT) to deplete graft-infiltrating macrophages. RESULTS: HS mainly caused macrophage-predominant infiltration around pulmonary artery injury systemic inflammatory response, but little impairment of lung function even if in combination with cold ischemia-reperfusion. Transcriptional profiling showed HS pretreatment increased pulmonary damage and alveolar remodeling but ameliorated inflammatory infiltration when compared to one-hit model of 12 hours cold ischemia-reperfusion injury. The allografts with donor DT-treatment one day ahead of HS showed injury and dysfunction at donation and worsened further at 24 hours reperfusion, whereas the allografts with recipient DT-treatment immediately after transplantation showed similar function and histology to the control treated with saline. CONCLUSION: Donor hypovolemia causes pulmonary artery injury and infiltration but has little impact on allograft function, even in combination with 24 h cold ischemia. Graft-infiltrating macrophages are critical in protecting graft from HS-induced injury and cold ischemia-reperfusion injury.
Project description:Pre-existing lung restricted autoantibodies (LRA) are associated with a higher incidence of primary graft dysfunction (PGD) although it remains unclear whether LRA can drive its pathogenesis. In syngeneic murine left lung transplant recipients, pre-existing LRA worsened graft dysfunction, which was evident by impaired gas exchange, increased pulmonary edema, and activation of damage-associated pathways in lung epithelial cells. LRA-mediated injury was distinct from ischemia-reperfusion injury since deletion of donor non-classical monocytes as well as host neutrophils could not prevent graft dysfunction in LRA-pretreated recipients. Whole LRA IgG molecule was necessary for lung injury which was mediated by the classical and alternative complement pathways and reversed by complement inhibition. However, deletion of Fc receptors in donor macrophages or mannose-binding lectin proteins failed to rescue lung function. LRA- mediated injury was localized to the transplanted lung and dependent on IL1β-mediated permeabilization of pulmonary vascular endothelium which allowed extravasation of antibodies. Genetic deletion or pharmacological inhibition of IL1R in the donor lungs prevented LRA-induced graft injury. In humans, pre-existing LRA was an independent risk factor for severe PGD and could be treated with plasmapheresis and complement blockade. We conclude that pre-existing LRA can compound ischemia-reperfusion injury to worsen PGD for which complement inhibition may be effective.
Project description:This is an ordinary differential equation model of the early inflammatory response during transplantion. Descriptions are included of the inflammatory events associated with the initial surgical procedure, the subsequent ischemia/reperfusion (I/R) events that cause tissue damage to the host as well as the donor graft, and the inflammatory effects of T cells.
Project description:Cold ischemia-reperfusion induced injury contributes to poor lung transplant outcomes. We used transcriptome sequencing to study the biological response of mouse lungs to the cold ischemia-reperfusion process. Mouse orthotopic left LTx was performed with standard cuff techniques. Briefly, the donor lungs were recovered after being flushed with 10ml low potassium dextran (LPD) solution and inflated with 50% oxygen. Cold ischemia was induced by storing donor lungs in 20ml LPD at 4°C for 24 hours. Then, the left donor lung was cuffed and implanted into recipients within 45 minutes. After the 4-hour reperfusion, the recipient mice were sacrificed and the transplanted lungs were collected.
Project description:Despite a potentially huge number, uncontrolled donation after circulatory death contributed little to alleviating donor lung shortage due to rapidly progressive warm ischemia. Many methods have been studied in animals, but the tolerable warm ischemic time (WIT) remains less than 90 minutes. Using a refined mouse model of pulmonary artery ligation (PAL), we firstly determined the maximum tolerable WIT. 4-hour PAL caused mild lung infiltration without dysfunction upon reperfusion, whereas 5-hour PAL triggered arterial endothelium injury and more significant infiltration with dysfunction. Transcriptional profiling showed a myeloid-dominant inflammation with mild injury in 4-hour PAL. The maximum WIT was then adapted in a clinically relevant scenario. Donor mice died of circulatory arrest without heparization and remained at 37ºC for 4 hours, followed by isogenic transplantation. As observed in 4-hour PAL, nonhypoxic warm ischemia-reperfusion hardly affected graft function and histology, no matter if warm ischemic lung preserved gas exchange by spontaneously breathing or by postmortem protective ventilation. If the dead donors were left untouched, however, the grafted lungs suffered severe hypoxic warm ischemia-reperfusion injury, varying from partially aerated totally lost. Taken together, the retrieval time can be extended to 4 hours at 37ºC by preventing cardiac-dead donor lung hypoxia.
Project description:Ischemia reperfusion (I/R) injury is an unavoidable event occurring during heart transplantation, leading to graft failures and lower long-term survival rate of the recipient. microRNAs are major regulators of genes. IR causes apoptosis/death of cardiomyocytes, resulting from up-regulation of apoptotic genes and down-regulation of anti-apoptotic genes which are regulated by microRNA. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during this process. We perserved donor hearts with university of Wisconsin solution for 18h at 4C degree before being implanted into recipients to create ischemia reperfusion injury. The preserved hearts were implanted into a syngeneic recipient mice. 24h after transplantation, heart grafts were harvested for microRNA extraction.
Project description:Ischemia reperfusion (IR) is an unavoidable step of organ transplantation. IR-induced injury constrains the number of donor lungs used for transplant. Here we performed longitudinal single-cell RNA sequencing (scRNA-seq) from human lungs of six individuals who underwent lung transplantation. Lung biopsies were collected after cold preservation and 2-hour reperfusion for each individual resulting in the profiling of 108,613 cells in total.
Project description:Background: Strategies to improve long term renal allograft survival have been directed to recipient dependent mechanisms of renal allograft injury. In contrast, no such efforts have been made to optimize organ quality in the donor. In order to get insight into the deleterious gene pathways expressed at different time points during deceased kidney transplantation, transcriptomics was performed on kidney biopsies from a large cohort of deceased kidney transplants. Methods: A total of 554 kidney biopsies were taken from living and deceased donor kidneys at donation, after cold ischemia and after reperfusion. Transcriptomics by means of whole genome micro-array analyses followed by functional pathway analyses was performed. Results: Oxidative stress and complement- and coagulation pathways were uncovered as potential pathways for intervention in deceased donors. No genes were found to be differentially expressed between donation and cold ischemia. After reperfusion, pathways related to oxidative stress, NOD-like signalling, MAPK, cytokine-cytokine receptor, complement- and-coagulation and chemokines were enriched in kidneys from deceased organ donors. Pathways related to prolonged and worsening deprivation of oxygen were associated with delayed graft function of DCD grafts. Conclusions: The present study reveals oxidative stress and enrichment of complement and coagulation pathways in deceased donor kidneys. Future intervention therapies to optimize donor organ quality and prolong allograft survival should target oxidative stress and innate immune activation in the donor.
Project description:Heart disease remains the leading cause of death globally. Although reperfusion following myocardial ischemia can prevent death by restoring nutrient flow, ischemia/reperfusion injury can cause significant heart damage. The mechanisms that drive ischemia/reperfusion injury are not well understood; currently, few methods can predict the state of the cardiac muscle cell and its metabolic conditions during ischemia. Here, we explored the energetic sustainability of cardiomyocytes, using a model for cellular metabolism to predict the levels of ATP following hypoxia. We modeled glycolytic metabolism with a system of coupled ordinary differential equations describing the individual metabolic reactions within the cardiomyocyte over time. Reduced oxygen levels and ATP consumption rates were simulated to characterize metabolite responses to ischemia. By tracking biochemical species within the cell, our model enables prediction of the cell’s condition up to the moment of reperfusion. The simulations revealed a distinct transition between energetically sustainable and unsustainable ATP concentrations for various energetic demands. Our model illustrates how even low oxygen concentrations allow the cell to perform essential functions. We found that the oxygen level required for a sustainable level of ATP increases roughly linearly with the ATP consumption rate. An extracellular O2 concentration of ~0.007 mM could supply basic energy needs in non-beating cardiomyocytes, suggesting that increased collateral circulation may provide an important source of oxygen to sustain the cardiomyocyte during extended ischemia. Our model provides a time-dependent framework for studying various intervention strategies to change the outcome of reperfusion.
Project description:Primary graft dysfunction (PGD) continues to be a major cause of early death after lung transplantation. Moreover, there remains a lack of accurate pre-transplant molecular markers for predicting PGD. To identify distinctive gene expression signatures associated with PGD, we profiled human donor lungs using microarray technology prior to the graft implantation. The genomic profiles of 10 donor lung samples from patients who subsequently developed clinically defined severe PGD were compared with 16 case-matched donor lung samples from those who had a favorable outcome without PGD. Matched factors used were: recipient age (± 10 years), recipient gender, recipient lung disease, and type of transplantation (single or bilateral). Keywords: Observational case-control study Matched case-control observational study: 10 primary graft dysfunction cases vs 16 Good outcome cases. One replicate per array.
Project description:Primary graft dysfunction (PGD) continues to be a major cause of early death after lung transplantation. Moreover, there remains a lack of accurate pre-transplant molecular markers for predicting PGD. To identify distinctive gene expression signatures associated with PGD, we profiled human donor lungs using microarray technology prior to the graft implantation. The genomic profiles of 10 donor lung samples from patients who subsequently developed clinically defined severe PGD were compared with 16 case-matched donor lung samples from those who had a favorable outcome without PGD. Matched factors used were: recipient age (± 10 years), recipient gender, recipient lung disease, and type of transplantation (single or bilateral). Keywords: Observational case-control study