ChIP-seq profiling of pancreatic tumor cells
Ontology highlight
ABSTRACT: Compare epigentic features between WT and Kdm3a-KO tumor cells in two tumor cell lines (6419c5 and 6694c2) with two knockout tumor cell clones (KO1 and KO2). Although immunotherapy has revolutionized cancer care, patients with pancreatic ductal adenocarcinoma (PDA) rarely respond to these treatments, a failure that is attributed to poor infiltration and activation of T cells in the tumor microenvironment (TME). We performed an in vivo CRISPR screen and identified lysine demethylase 3A (KDM3A) as a potent epigenetic regulator of immunotherapy response in PDA. Mechanistically, KDM3A acts through Krueppel-like factor 5 (KLF5) and SMAD family member 4 (SMAD4) to regulate the expression of the epidermal growth factor receptor (EGFR). Ablation of KDM3A, KLF5, SMAD4, or EGFR in tumor cells altered the immune TME and sensitized tumors to combination immunotherapy, while treatment of established tumors with an EGFR inhibitor erlotinib prompted a dose-dependent increase in intratumoral T cells. This study defines an epigenetic-transcriptional mechanism by which tumor cells modulate their immune microenvironment and highlights the potential of EGFR inhibitors as immunotherapy sensitizers in PDA.
ORGANISM(S): Mus musculus
PROVIDER: GSE156889 | GEO | 2020/08/27
REPOSITORIES: GEO
ACCESS DATA