Argonaute-CLIP delineates versatile, functional RNAi networks in Aedes aegypti, a major vector of human viruses
Ontology highlight
ABSTRACT: Argonaute (AGO) proteins bind small RNAs to silence complementary RNA transcripts and are central to RNA interference (RNAi). AGO-crosslinking immunoprecipitation (AGO-CLIP) has illuminated RNAi networks, but bioinformatic analysis is laborious and lack of experimental tools hinders its application outside of model organisms. RNAi is critical for regulation of gene expression and defense against viral infection in the Aedes aegypti mosquito, which transmits Zika, chikungunya, dengue, and yellow fever viruses to cause human disease. We developed AGO-CLIP for both mosquito AGO proteins and a universal, streamlined software package for CLIP analysis, identifying 230 novel small RNAs and 5,447 small RNA targets that comprise a comprehensive RNAi network map. We used this unique resource to predict repression of small RNA targets in specific mosquito tissues. Notably, this resource revealed unexpected AGO target preferences and uncovered a new mode of AGO-mediated repression, findings that have broad implications for the study of antiviral RNAi.
ORGANISM(S): Aedes aegypti
PROVIDER: GSE157168 | GEO | 2020/09/04
REPOSITORIES: GEO
ACCESS DATA