Genome-wide maps of chromatin state in buffalo fibroblasts with different cloning efficency
Ontology highlight
ABSTRACT: We report the distribution of histone acetylation at global genomic level in donor cells with different cloning efficiency. By obtaining over 40 million clean reads from immunoprecipitated DNA, we generated genome-wide chromatin-state maps of two buffalo fibroblast cell lines. We find that high cloning efficiency BFFs also had more regions enriched with H3K9ac sites near to the upstream of genes related to glycolysis. This study provides a framework for the application of comprehensive chromatin profiling towards donor cells with different cloning efficiency. We report the landscape of chromatin accessibility in donor cells with different cloning efficiency by transposase-accessible chromatin sequencing (ATAC-seq). We found that the landscape of chromatin accessibility was similar in both BFF1 and BFF2. Most loci defined by ATAC-seq was abundant just on the upstream of transcription start sites (TSS), but the signals in BFF2 were stronger than BFF1. GO analysis showed that most differential loci annotated genes were involved in developmental process, cellular process and metabolic process. This study provides a framework for the application of landscape of chromatin accessibility towards donor cells with different cloning efficiency.
Project description:Animal cloning can be achieved through somatic cell nuclear transfer (SCNT), yet the success rate is very low. Recent studies have revealed H3K9me3 in donor cells and abnormal Xist activation as epigenetic barriers that impede SCNT reprogramming. Here we overcome both barriers by using Xist knockout donor cells combined with overexpressing Kdm4d and achieved the highest cloning efficiency in mice. However, post-implantation developmental defects and abnormal placenta were still observed, indicating presence of additional epigenetic barriers impedes SCNT cloning. Comparative DNA methylome analysis of IVF and SCNT blastocysts identified many abnormally methylated regions in SCNT embryos, despite successful global methylome reprogramming. Strikingly, allelic transcriptome and ChIP-seq analyses of preimplantation SCNT embryos revealed a complete loss of H3K27me3 imprinting, which likely accounts for postimplantation developmental defects of SCNT embryos. This study not only provides an efficient method for mouse cloning, but also paves the way for further improving SCNT cloning efficiency.
Project description:Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq) to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign. There are 20 samples in total. These consist of 10 FAIRE-seq samples, specifically 6 haploid samples, S. cerevisiae strain UWOPS05_217_3 replicates 1 and 2, S. cerevisiae strain DBVPG1373 replicates 1 and 2, and S. paradoxus strain CBS432 replicates 1 and 2. There are also 4 diploid hybrid samples, hybrid between S. cerevisiae strain UWOPS05_217_3 and S. paradoxus strain CBS432 replicates 1 and 2, and the hybrid between S. cerevisiae strain DBVPG1373 and S. paradoxus strain CBS432 replicates 1 and 2. There are also RNA-seq samples for each of these 10 samples.
Project description:Background Transgenic cattle carrying multiple genomic modifications have been produced by sequential gene targeting and serial rounds of somatic cell chromatin transfer (cloning). However, cloning efficiency tends to decline with the increase of rounds of cloning. It is possible that multiple rounds of cloning compromise the genome integrity, rendering a decline in cloning. To test this possibility, we performed 9 high density array Comparative Genomic Hybridization (CGH) experiments to test the genome integrity in 3 independent bovine transgenic cell lineages generated from serial rounds of genetic modification and cloning. Our plan included the control hybridizations (self to self) of 3 founder cell lines and 6 comparative hybridizations between these founders and their derived cell lines that are drastically different in cloning efficiency. Results We detected similar amounts of differences between the control hybridizations (8, 13 and 39 differences) and the comparative analyses of both "high" and "low" cloning efficiency cell lines (ranging from 7 to 57 with a mean of ~20). Almost 75% of the large differences (>10 kb) and about 45% of all differences shared the same type (loss or gain) and were located in nearby genomic regions across hybridizations. Therefore, it is likely that they were not true differences but caused by systematic factors associated with local genomic features (e.g. GC contents). Conclusions Our findings reveal that large copy number genomic structural variations are less likely to arise during genetic targeting and serial rounds of cloning, fortifying the notion that epigenetic errors introduced from serial cloning may be responsible for the cloning efficiency decline. 9 custom 2.1M high density aCGH were performed to test the genome integrity in 3 independent bovine transgenic cell lineages generated from serial rounds of genetic modification and cloning, accommodating the control hybridizations (self to self) of the 3 founder cell lines and 6 comparative hybridizations between these founders and their derived cell lines that are drastically different in cloning efficiency.
Project description:Hereditary Leiomyomatosis and renal cell cancer is caused by fumarate hydratase loss of heterozygosity and subsequence accumulation of fumarate. Fumarate is known to activate the anti-oxidant response and is key for cellular survival. Fumarate succinates KEAP1 which releases NRF2 to activate the antioxidant response. The role of fumarate on the global regulatory chromatin landscape is less understood. Here, by integrating chromatin accessibility and histone ChIP-seq profiles, we identify complex transcription factor networks involved in the highly remodelled chromatin landscape of FH-deficient cells. We implicate FOXA2 in the maintenance of FH-deficient cells by regulating anti-oxidant response genes and subsequent metabolic output, independent of NRF2. These results identify new redox and amino acid metabolism regulators and provide new avenues for therapeutic intervention.
Project description:Background Transgenic cattle carrying multiple genomic modifications have been produced by sequential gene targeting and serial rounds of somatic cell chromatin transfer (cloning). However, cloning efficiency tends to decline with the increase of rounds of cloning. It is possible that multiple rounds of cloning compromise the genome integrity, rendering a decline in cloning. To test this possibility, we performed 9 high density array Comparative Genomic Hybridization (CGH) experiments to test the genome integrity in 3 independent bovine transgenic cell lineages generated from serial rounds of genetic modification and cloning. Our plan included the control hybridizations (self to self) of 3 founder cell lines and 6 comparative hybridizations between these founders and their derived cell lines that are drastically different in cloning efficiency. Results We detected similar amounts of differences between the control hybridizations (8, 13 and 39 differences) and the comparative analyses of both "high" and "low" cloning efficiency cell lines (ranging from 7 to 57 with a mean of ~20). Almost 75% of the large differences (>10 kb) and about 45% of all differences shared the same type (loss or gain) and were located in nearby genomic regions across hybridizations. Therefore, it is likely that they were not true differences but caused by systematic factors associated with local genomic features (e.g. GC contents). Conclusions Our findings reveal that large copy number genomic structural variations are less likely to arise during genetic targeting and serial rounds of cloning, fortifying the notion that epigenetic errors introduced from serial cloning may be responsible for the cloning efficiency decline.
Project description:Suspended animation (e.g. hibernation, diapause) allows organisms to survive extreme environments. But the mechanisms underlying the evolution of suspended animation states are unknown. The African turquoise killifish has evolved diapause as a form of suspended development to survive the complete drought that occurs every summer. Here, we show that gene duplicates – paralogs – exhibit specialized expression in diapause compared to normal development in the African turquoise killifish. Surprisingly, paralogs with specialized expression in diapause are evolutionarily very ancient and are present even in vertebrates that do not exhibit diapause. To determine if evolution of diapause is due to the regulatory landscape rewiring at ancient paralogs, we assessed chromatin accessibility genome-wide in fish species with or without diapause. This analysis revealed an evolutionary recent increase in chromatin accessibility at very ancient paralogs in African turquoise killifish. The increase in chromatin accessibility is linked to the presence of new binding sites for transcription factors, likely due to de novo mutations and transposable element (TE) insertion. Interestingly, accessible chromatin regions in diapause are enriched for lipid metabolism genes, and our lipidomics studies uncover a striking difference in lipid species in African turquoise killifish diapause, which could be critical for long-term survival. Together, our results show that diapause likely originated by repurposing pre-existing gene programs via recent changes in the regulatory landscape. This work raises the possibility that suspended animation programs could be reactivated in other species for long-term preservation via transcription factor remodeling and suggests a mechanism for how complex adaptations evolve in nature.
Project description:Animal cloning can be achieved through somatic cell nuclear transfer (SCNT), yet the success rate remains very low. Recent studies have revealed two epigenetic barriers, H3K9me3 in donor cells and abnormal Xist activation, that impede SCNT reprogramming. Here we overcome both barriers by combining the use of Xist knockout donor cells and overexpressing Kdm4d, which allowed us to achieve the highest mouse cloning efficiency. However, SCNT-associated developmental defects and abnormal placenta were still observed, suggesting the existence of additional epigenetic defects in these SCNT embryos. Comparative DNA methylome analysis of IVF and SCNT blastocysts identified many abnormally methylated regions in SCNT embryos, despite successful global methylome reprogramming. Strikingly, allelic transcriptome analyses of SCNT blastocysts revealed a complete loss-of-imprinting at the H3K27me3-dependent imprinted genes, which may account for postimplantation developmental defects of SCNT embryos. This study thus not only provides the most efficient method for mouse cloning but also points the way for further improve SCNT cloning.
Project description:Animal cloning can be achieved through somatic cell nuclear transfer (SCNT), yet the success rate remains very low. Recent studies have revealed two epigenetic barriers, H3K9me3 in donor cells and abnormal Xist activation, that impede SCNT reprogramming. Here we overcome both barriers by combining the use of Xist knockout donor cells and overexpressing Kdm4d, which allowed us to achieve the highest mouse cloning efficiency. However, SCNT-associated developmental defects and abnormal placenta were still observed, suggesting the existence of additional epigenetic defects in these SCNT embryos. Comparative DNA methylome analysis of IVF and SCNT blastocysts identified many abnormally methylated regions in SCNT embryos, despite successful global methylome reprogramming. Strikingly, allelic transcriptome analyses of SCNT blastocysts revealed a complete loss-of-imprinting at the H3K27me3-dependent imprinted genes, which may account for postimplantation developmental defects of SCNT embryos. This study thus not only provides the most efficient method for mouse cloning but also points the way for further improve SCNT cloning.
Project description:A single hematopoietic stem cell can give rise to all blood cells with remarkable fidelity. Here, we define the chromatin accessibility and transcriptional landscape controlling this process in thirteen primary cell types that traverse the hematopoietic hierarchy. Exploiting the finding that enhancer landscapes better reflect cell identity than mRNA levels, we enable "enhancer cytometry" for accurate enumeration of pure cell types from complex populations. We further reveal the lineage ontogeny of genetic elements linked to diverse human diseases. In acute myeloid leukemia, chromatin accessibility reveals distinctive regulatory evolution in pre-leukemic HSCs (pHSCs), leukemia stem cells, and leukemic blasts. These leukemic cells demonstrate unique lineage infidelity, confirmed by single cell regulomes. We further show that pHSCs have a competitive advantage that is conferred by reduced chromatin accessibility at HOXA9 targets and is associated with adverse patient outcomes. Thus, regulome dynamics can provide diverse insights into human hematopoietic development and disease. Single-cell ATAC-seq of LMPPs, Monocytes, LSCs and Luekemic blast cells.
Project description:Single cell multiomics from 2 donor controls, expression and chromatin accessibility. Samples belong to gray matter tissue from the brain.