Sperm DNA Methylation Epimutation Biomarker for Paternal Offspring Autism Susceptibility
Ontology highlight
ABSTRACT: Autism spectrum disorder (ASD) has increased over ten-fold over the past several decades, and appears predominantly associated with paternal transmission. Although genetics is anticipated to be a component of ASD etiology, environmental epigenetics is now thought to be an important factor. Epigenetic alterations, such as DNA methylation have been correlated with ASD. The current study was designed to identify a DNA methylation signature in sperm as a potential biomarker to identify paternal offspring autism susceptibility. Sperm samples were obtained from fathers, many undergoing in vitro fertilization (IVF) procedures, that have children with or without autism, and the sperm then assessed for alterations in DNA methylation. Differential DNA methylation regions (DMRs) were identified in the sperm of fathers with autistic children in comparison to those without ASD children. An MeDIP-seq procedure was used to identify DMRs. The genomic features and genes associated with the DMRs were identified. The potential sperm DMR biomarker was validated with a blinded test set of individuals. Observations demonstrate a significant set of DMRs in sperm can potentially act as a biomarker for paternal offspring autism susceptibility.
Project description:Although autism spectrum disorder (ASD) is among the most heritable of neurodevelopmental disorders, the rapidly rising prevalence of ASD suggests that environmental factors may interact with genetic risk for ASD. Environmental factors may impact both gene expression and phenotypes in ASD through epigenetic modifications that, in turn, could lead to intergenerational effects influencing risk for ASDs. Endocrine disrupting compounds (EDCs), such as the long-lived organochlorines, are of particular interest with respect to risk for autism because of their ability to interfere with sex hormones that have been implicated in the regulation of RORA, a dysregulated gene in ASD that is a master regulator of many other ASD risk genes. The specific aims of this study are to: 1) investigate whether high versus low exposures to the persistent organochlorine 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) are associated with differentially methylated regions (DMRs) in sperm from a Faroese cohort whose natural diet of pilot whale meat and blubber exposes them to higher than average levels of organic pollutants; 2) determine if genes associated with DDE DMRs are enriched for ASD risk genes; 3) identify pathways and functions over-represented among genes associated with DMRs. Whole genome bisulfite sequencing (WGBS) was used to identify genome-wide DMRs in sperm from individuals divided by high and low exposure levels. Gene ontology and pathway analyses were used to determine enrichment in functional relationships to ASD. Genes in DMRs not only could discriminate between high and low exposures to DDE, but also were enriched in autism risk genes. Gene ontology and pathway analyses of these genes show significant enrichment for neurodevelopmental processes frequently impacted by ASD. Results of this study show that elevated exposure to certain organochlorines is associated with genome-wide DNA methylation patterns in sperm affecting genes involved in neurological functions and developmental disorders, including ASD.
Project description:Advanced paternal age at fertilization has been suggested to be a risk factor for neurodevelopmental, psychiatric and other disorders in offspring. One emerging hypothesis suggests that altered offspring phenotype is linked with age-related accumulation of epigenetic changes in the sperm of fathers. Given that paternal age is increasing in the developed world, understanding aging-related epigenetic changes in sperm is needed as well as environmental factors that modify such changes. In this study, we characterize age-dependent changes in sperm DNA methylation profiles between young pubertal (postnatal day (PNDs) 65) and mature (PND120) Wistar rats. We also analyze these changes in rats exposed perinatally to 0.2 mg/kg of ubiquitous environmental xenobiotic 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47). Reduced representation bisulfite sequencing (RRBS) libraries were prepared from caudal epididymal sperm DNA and differentially methylated regions (DMRs; ≥ 10x coverage depth, ≥ 3 CpGs per cluster, ≥ 5% methylation change, q < 0.05) were identified via MethPipe package. We identified 21 and 9 exposure-related DMRs in sperm collected on PND65 and PND120, respectively. Two DMRs overlapped between the two time-points. This is the first study to demonstrate that environmentally-relevant perinatal exposure to PBDE results in long-lasting changes in sperm DNA methylation. In control animals, 5,319 age-dependent DMRs were identified, with 99.3% DMRs hypermethylated in mature animals compared to young pubertal rats. These age-related DMRs were enriched for functional categories essential for embryonic development, such as pattern specification, forebrain and sensory organ development, and the Wnt pathway. In BDE-47 exposed rats, sperm DNA methylation was higher in young pubertal and lower in mature animals when compared to controls, which resulted in a significant attenuation in the number of age-dependent DMRs (N = 189) identified in the exposed group. In conclusion, our results indicate that the natural aging process has profound effects on sperm methylation levels and this effect may be modified by environmental exposures. Moreover, our results further support the role of sperm DNA methylation as a likely mechanism by which advanced paternal age is associated with adverse offspring health and development.
Project description:Assisted reproductive technologies (ART) account for 1-6% of live births in developed countries. While most children conceived using ART are healthy, increases in birth and genomic imprinting defects have been reported; such abnormal outcomes have been attributed to underlying parental infertility and/or the ART used. Here, we assessed whether paternal genetic and lifestyle factors, that are associated with male infertility and affect the sperm epigenome, can influence ART outcomes. We examined how paternal factors, Dnmt3L haploinsufficiency and/or diet-induced obesity, in combination with ART (superovulation, in vitro fertilization, embryo culture and embryo transfer), could adversely influence embryo development and DNA methylation patterning in mice. While male mice fed high-fat diets (HFD) gained weight and showed perturbed metabolic health, their sperm DNA methylation was minimally affected by the diet. In contrast, Dnmt3L haploinsufficiency induced a marked loss of DNA methylation in sperm; notably, regions affected were associated with neurodevelopmental pathways and enriched in young retrotransposons, sequences that can have functional consequences in the next generation. Following ART, placental imprinted gene methylation and growth parameters were impacted by one or both paternal factors. For the embryos conceived by natural conception, the abnormality rates were similar for WT and Dnmt3L+/- fathers. In contrast, paternal Dnmt3L+/- genotype, as compared to WT fathers, resulted in a 3-fold increase in the incidence of morphological abnormalities in embryos generated by ART. Together, the results indicate that embryonic morphological and epigenetic defects associated with ART may be exacerbated in offspring conceived by fathers with sperm epimutations.
Project description:Genomic imprinting is an allele-specific gene expression system important for mammalian development and function. The molecular basis of genomic imprinting is allele-specific DNA methylation 2. While it is well known that the de novo DNA methyltransferases Dnmt3a/b are responsible for the establishment of genomic imprinting, how the methylation mark is erased during primordial germ cell (PGC) reprogramming remains a mystery. Here we report that Tet1 plays a critical role in the erasure of genomic imprinting. We show that despite their identical genotype, progenies derived from mating between Tet1-KO males and wild-type females exhibit a number of variable phenotypes including placental, fetal and postnatal growth defects, and early embryonic lethality. These defects are, at least in part, caused by the dysregulation of imprinted genes, such as Peg10 and Peg3, which exhibit aberrant hypermethylation in the paternal allele of differential methylated regions (DMRs). RNA-seq reveals extensive dysregulation of imprinted genes in the next generation due to paternal functional loss of Tet1. Genome-wide DNA methylation analysis of E13.5 PGCs and sperm derived from Tet1-KO mice reveals hypermethylation of DMRs of imprinted genes in sperm, which can be traced back to PGCs. Dynamics of methylation change in Tet1-affected sites suggested that Tet1 swipes remaining methylation including imprinted genes at late reprogramming stage. We also revealed that Tet1play a role in paternal imprinting erasure in females germline. Thus, our study establishes a critical function for Tet1 in the erasure of genomic imprinting. Genome-wide DNA methylation analysis of sperm derived from control and Tet1-KO mice
Project description:Purpose: Paternal life experiences impact offspring health via germline, and epigenetic inheritance provides a potential mechanism. However, global reprogramming during offspring embryogenesis and gametogenesis represents the largest hurdle to conceptualize it. Yet, detailed characterization of how sperm epigenetic alterations carrying “environmental memory” can evade offspring embryonic reprogramming remains elusive. Methods: we profiled the sperm DNA methylation patterns of three consecutive generations (F0, F1 and F2) in both control and stress groups by using whole-genome bisulfite sequencing (WGBS). A total of 18 sperm samples were analyzed, including three biological replicates for each generation under each treatment. In addition, small RNA sequencing was carried out on paternal sperm samples to investigate whether long-term psychological stress affected the enrichment of certain sncRNAs and to identify whether they participated in mediating the occurrence and paternal inheritance of the stress-induced DMRs Rsults: Using an optimized data analysis workflow, we obtained approximately 800 million clean reads per sample (build mm10) with strand-specific coverage ~21×, and the data covered ~96.00% of the total 21,867,837 reference CpG dinucleotides. A total of 24,427, 7,975, and 5,173 differentially methylated regions (DMRs) between control and stress groups were found in the F0, F1, and F2 generations, respectively. Inter- and transgenerational inheritance of paternal DMRs were at frequencies approximately 11.36% and 0.48%, respectively. These DMRs related to genes with functional implications for psychological stress response, and tissue inheritance of these DMRs passed paternal disorders epigenetically to offspring. More importantly, these DMRs evaded offspring embryonic reprogramming through erasure and subsequent reestablishment, but not via un-erasure way. Nonetheless, their reestablishment proportions in the primitive streak (E7.5) stage were altered. Furthermore, sncRNA-seq revealed that stress-induced tsRNA, miRNA and rsRNA dysregulation in paternal sperm might play important roles in DMRs occurrence and paternal inheritance.
Project description:Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex heritability and higher prevalence in males. The neonatal epigenome has the potential to reflect past interactions between genetic and environmental factors during early development and influence future health outcomes. We performed whole-genome bisulfite sequencing of 152 umbilical cord blood samples from the MARBLES and EARLI high-familial risk prospective cohorts to identify an epigenomic signature of ASD at birth. Samples were split into discovery and replication sets and stratified by sex, and their DNA methylation profiles were tested for differentially methylated regions (DMRs) between ASD and typically developing control cord blood samples. DMRs were mapped to genes and assessed for enrichment in gene function, tissue expression, chromosome location, and overlap with prior ASD studies. DMR coordinates were tested for enrichment in chromatin states and transcription factor binding motifs. Results were compared between discovery and replication sets and between males and females. We identified DMRs stratified by sex that discriminated ASD from control cord blood samples in discovery and replication sets. At a region level, 7 DMRs in males and 31 DMRs in females replicated across two independent groups of subjects, while 537 DMR genes in males and 1762 DMR genes in females replicated by gene association. These DMR genes were significantly enriched for brain and embryonic expression, X chromosome location, and identification in prior epigenetic studies of ASD in post-mortem brain. In males and females, autosomal ASD DMRs were significantly enriched for promoter and bivalent chromatin states across most cell types, while sex differences were observed for X-linked ASD DMRs. Lastly, these DMRs identified in cord blood were significantly enriched for binding sites of methyl-sensitive transcription factors relevant to fetal brain development. At birth, prior to the diagnosis of ASD, a distinct DNA methylation signature was detected in cord blood over regulatory regions and genes relevant to early fetal neurodevelopment. Differential cord methylation in ASD supports the developmental and sex-biased etiology of ASD and provides novel insights for early diagnosis and therapy.
Project description:The global prevalence of type 2 diabetes (T2D) is increasing, and it is contributing to the susceptibility to diabetes and its related epidemic in offspring. Although the impacts of paternal T2D on metabolism of offspring have been well established, the exact molecular and mechanistic basis that mediates these impacts remains largely unclear. Here we show that paternal T2D increases the susceptibility to diabetes in offspring through the gametic epigenetic alterations. Paternal T2D led to glucose intolerance and insulin resistance in offspring. Relative to controls, offspring of T2D fathers exhibited altered gene expression patterns in the pancreatic islets, with downregulation of several genes involved in glucose metabolism and insulin signaling pathway. Epigenomic profiling of offspring pancreatic islets revealed numerous changes in cytosine methylation depending on paternal T2D, including reproducible changes in methylation over several insulin signaling genes. Paternal T2D altered overall methylome patterns in sperm, with a large portion of differentially methylated genes overlapped with that of pancreatic islets in offspring. Our study revealed, for the first time, that T2D can be inherited transgenerationally through the mammalian germline by an epigenetic manner. Examination of the effect of paternal T2D on the DNA methylation in the pancreatic islets of offspring and in the sperm of father.
Project description:Using DNA microarray as a global approach to understanding the molecular basis of autism, we examined gene expression profiling in peripheral blood from 21 young adults with autism spectrum disorder (ASD) and healthy mothers having children with ASD, between whom there was no blood relationship. Several genes which were significantly changed in the ASD group comparing with their age- and gender-matched healthy subjects were mainly involved in cell morphology, cellular assembly and organization, and nerve system development and function. In addition, mothers having children with ASD possessed a unique gene expression signature shown as significant alterations of protein synthesis despite of their nonautistic diagnostic status. Moreover, an ASD-associated gene expression signature was commonly observed in both individuals with ASD and healthy mothers having children with ASD. Total RNA was prepared from venous blood which was taken from each subject. Gene expression profiling of venous blood from subjects with ASD (21), the healthy women who had children with ASD (21) and their age- and gender-matched healthy subjects (42) were obtained using a whole human genome oligonucleotide microarray (Agilent 44K Human whole genome array G4112F, GPL6480) to measure gene expression in these samples according to the manufacture’s protocol. The one GSM sample of microarray analysis was made by individual subject. Differentially expressed genes were determined across all rationed expression values for age- and gender-matched pairs (ASD vs. control, asdMO vs. ctrlMO) using Genespling analysis.
Project description:Genomic imprinting is an allele-specific gene expression system important for mammalian development and function. The molecular basis of genomic imprinting is allele-specific DNA methylation 2. While it is well known that the de novo DNA methyltransferases Dnmt3a/b are responsible for the establishment of genomic imprinting, how the methylation mark is erased during primordial germ cell (PGC) reprogramming remains a mystery. Here we report that Tet1 plays a critical role in the erasure of genomic imprinting. We show that despite their identical genotype, progenies derived from mating between Tet1-KO males and wild-type females exhibit a number of variable phenotypes including placental, fetal and postnatal growth defects, and early embryonic lethality. These defects are, at least in part, caused by the dysregulation of imprinted genes, such as Peg10 and Peg3, which exhibit aberrant hypermethylation in the paternal allele of differential methylated regions (DMRs). RNA-seq reveals extensive dysregulation of imprinted genes in the next generation due to paternal functional loss of Tet1. Genome-wide DNA methylation analysis of E13.5 PGCs and sperm derived from Tet1-KO mice reveals hypermethylation of DMRs of imprinted genes in sperm, which can be traced back to PGCs. Dynamics of methylation change in Tet1-affected sites suggested that Tet1 swipes remaining methylation including imprinted genes at late reprogramming stage. We also revealed that Tet1play a role in paternal imprinting erasure in females germline. Thus, our study establishes a critical function for Tet1 in the erasure of genomic imprinting. Genome-wide DNA methylation analysis of E13.5 PGCs from control and Tet1-KO mice