Transcriptomics

Dataset Information

0

Loss of the seipin gene perturbs eggshell formation in Caenorhabditis elegans


ABSTRACT: SEIPIN, an evolutionary conserved protein, plays pivotal roles during lipid droplet (LD) biogenesis and is associated with various human diseases with unclear mechanisms. Here, we analyzed C. elegans mutants deleted of the sole SEIPIN gene, seip-1. Homozygous seip-1 mutants displayed penetrant embryonic lethality, which is caused by the disruption of the lipid-rich permeability barrier, the innermost layer of the C. elegans embryonic eggshell. In C. elegans oocytes and embryos, SEIP-1 is associated with LDs and crucial for controlling LD size and lipid homeostasis. The seip-1 deletion mutants reduced the ratio of polyunsaturated fatty acids (PUFAs) in their embryonic fatty acid pool. Interestingly, dietary supplementation of selected n-6 PUFAs rescued the embryonic lethality and defective permeability barrier. Accordingly, we propose that SEIP-1 may maternally regulate LD biogenesis and lipid homeostasis to orchestrate the formation of the permeability barrier for eggshell synthesis during embryogenesis. A lipodystrophy allele of seip-1 resulted in embryonic lethality as well and could be rescued by PUFA supplementation. These experiments support a great potential for using C. elegans to model seipin-associated human diseases.

ORGANISM(S): Caenorhabditis elegans

PROVIDER: GSE157800 | GEO | 2020/09/14

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-12-12 | GSE282709 | GEO
2016-12-23 | GSE87682 | GEO
2016-12-06 | GSE84419 | GEO
2020-09-14 | GSE157887 | GEO
2024-12-01 | GSE251878 | GEO
2021-07-15 | MTBLS1138 | MetaboLights
2023-04-17 | GSE224249 | GEO
2021-10-04 | GSE163561 | GEO
2023-01-24 | PXD037497 | Pride
2017-11-06 | PXD007192 | Pride