Next Generation Sequencing Facilitates Quantitative Analysis of TP53-WT and TP53-KO HCT116 cells transcriptomes [RNA-seq]
Ontology highlight
ABSTRACT: Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare TP53-WT and TP53-KO HCT116 cells transcriptome profiling (RNA-seq) under 5-FU treatment condition and to evaluate the correlation between transcriptome profileing and chromatin accessibility under 5-FU treatment. Methods: HCT116 cell profiles of TP53-WT and TP53- KO were generated by deep sequencing, in duplicates, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform levels: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA). Conclusions: Our study represents the detailed analysis of TP53-WT and TP53-KO HCT116 cell transcriptomes under 5-FU treatment with different timepoint, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that RNA-seq offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a TP53-WT and TP53-KO cells with and without 5-FU treatment in different timepoint. We conclude that NGS based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
ORGANISM(S): Homo sapiens
PROVIDER: GSE157951 | GEO | 2021/02/10
REPOSITORIES: GEO
ACCESS DATA