RNAseq to profile transcriptomes in adipose tissue macrophages (ATMs) from TKO(mir-106a~363-/- mir-106b~25-/- mir-17~92flox/flox Lyz2-Cre) and WT(Lyz2-Cre) mice fed with regular chow diet or high fat diet.
Ontology highlight
ABSTRACT: We performed the transcriptomic analysis of RNA-seq of ATMs generated from WT and TKO mice fed with regular chow diet or high fat diet.
Project description:RNAseq to profile transcriptomes in adipose tissue macrophages (ATMs) from TKO(mir-106a~363-/- mir-106b~25-/- mir-17~92flox/flox Lyz2-Cre) and WT(Lyz2-Cre) mice fed with regular chow diet or high fat diet.
Project description:We performed the transcriptomic analysis of RNA-seq of BMDMs generated from WT and TKO mice and stimulated with 10 ng/ml LPS for 3 h to identify gene expression changes.
Project description:MicroRNAs (miRNAs) form a class of noncoding RNA genes whose products are small single-stranded RNAs that are involved in the regulation of translation and degradation of mRNAs. There is a fine balance between deregulation of normal developmental programs and tumor genesis. An increasing body of evidence suggests that altered expression of miRNAs is entailed in the pathogenesis of human cancers. Studies in mouse and human cells have identified the miR-17-92 cluster as a potential oncogene. The miR-17-92 cluster is often amplified or overexpressed in human cancers and has recently emerged as the prototypical oncogenic polycistron miRNA. The functional analysis of miR-17-92 is intricate by the existence of two paralogues: miR-106a-363 and miR-106b-25. During early evolution of vertebrates, it is likely that the three clusters commenced via a series of duplication and deletion occurrences. As miR-106a-363 and miR-106b-25 contain miRNAs that are very similar, and in some cases identical, to those encoded by miR-17-92, it is feasible that they regulate a similar set of genes and have overlapping functions. Further understanding of these three clusters and their functions will increase our knowledge about cancer progression. The present review discusses the characteristics and functions of these three miRNA clusters.
Project description:RNAseq to profile transcriptomes in bone marrow-derived macrophages from TKO(mir-106a~363-/- mir-106b~25-/- mir-17~92flox/flox Lyz2-Cre) and WT(Lyz2-Cre) mice
Project description:MicroRNAs (miRs) have been identified as potent regulators of both normal development and the hallmarks of cancer. Targeting of microRNAs has been shown to have preclinical promise, and select miR-based therapies are now in clinical trials. Ewing Sarcoma is a biologically aggressive pediatric cancer with little change in clinical outcomes despite improved chemotherapeutic regimens. There is a substantial need for new therapies to improve Ewing Sarcoma outcomes and to prevent chemotherapy-related secondary sequelae. Most Ewing Sarcoma tumors are driven by the EWS/Fli-1 fusion oncoprotein, acting as a gain-of-function transcription factor causing dysregulation of a variety of targets, including microRNAs. Our previous studies, and those of others, have identified upregulation of miRs belonging to the related miR-17~92a, miR-106b~25, and miR-106a~363 clusters in Ewing Sarcoma. However, the functional consequences of this have not been characterized, nor has miR blockade been explored as an anti-cancer strategy in Ewing Sarcoma. To simulate a potential therapeutic approach, we examined the effects of blockade of these clusters, and their component miRs. Using colony formation as a read-out, we find that blockade of selected individual cluster component miRs, using specific inhibitors, has little or no effect. Combinatorial inhibition using miR "sponge" methodology, on the other hand, is inhibitory to colony formation, with blockade of whole clusters generally more effective than blockade of miR families. We show that a miR-blocking sponge directed against the poorly characterized miR-106a~363 cluster is a particularly potent inhibitor of clonogenic growth in a subset of Ewing Sarcoma cell lines. We further identify upregulation of miR-15a as a downstream mechanism contributing to the miR-106a~363 sponge growth-inhibitory effect. Taken together, our studies provide support for a pro-oncogenic role of the miR-106a~363 cluster in Ewing Sarcoma, and identify miR-106a~363 blockade, as well as miR-15a replacement, as possible strategies for inhibition of Ewing Sarcoma growth.
Project description:RNAseq to profile transcriptomes in bone marrow-derived macrophages from TKO (mir-106a~363-/- mir-106b~25-/- mir-17~92flox/flox Lyz2-Cre) and WT(Lyz2-Cre) mice stimulated with LPS for 3 hours.
Project description:PURPOSE:Novel noninvasive biomarkers with high sensitivity and specificity for the diagnosis of breast cancer (BC) are urgently needed in clinics. The aim of this study was to explore whether miRNAs from the miR-106a-363 cluster can be detected in the circulation of BC patients and whether these miRNAs can serve as potential diagnostic biomarkers. METHODS:The expression of 12 miRNAs from the miR-106a-363 cluster was evaluated using qRT-PCR in 400 plasma samples (from 200 BC patients and 200 healthy controls (HCs)) and 406 serum samples (from 204 BC patients and 202 HCs) via a three-phase study. The identified miRNAs were further examined in tissues (32 paired breast tissues), plasma exosomes (from 32 BC patients and 32 HCs), and serum exosomes (from 32 BC patients and 32 HCs). RESULTS:Upregulated levels of four plasma miRNAs (miR-106a-3p, miR-106a-5p, miR-20b-5p, and miR-92a-2-5p) and four serum miRNAs (miR-106a-5p, miR-19b-3p, miR-20b-5p, and miR-92a-3p) were identified and validated in BC. A plasma 4-miRNA panel and a serum 4-miRNA panel were constructed to discriminate BC patients from HCs. The areas under the receiver-operating characteristic curves of the plasma panel were 0.880, 0.902, and 0.858, and those of the serum panel were 0.910, 0.974, and 0.949 for the training, testing, and external validation phases, respectively. Two overlapping miRNAs (miR-106a-5p and miR-20b-5p) were consistently upregulated in BC tissues. Except for the expression of the plasma-derived exosomal miR-20b-5p, the expression patterns of exosomal miRNAs were concordant between plasma and serum, indicating the potential use of exosomal miRNAs as biomarkers. CONCLUSION:We identified four plasma miRNAs and four serum miRNAs from the miR-106a-363 cluster as promising novel biomarkers for the diagnosis of BC.
Project description:Pyruvate dehydrogenase complex (PDH) is an important complex of three enzymes that transforms pyruvate into acetyl-CoA, subsequently entering the tricarboxylic acid (TCA) cycle to produce ATP and electron donors. As a key regulator of energy and metabolic homeostasis, PDH is considered a potential therapeutic target of many diseases. On the other hand, the relationship between PDH and obesity is not clear. In this study, peripheral blood of Pdha1fl/flLyz2-Cre and C57BL/6 mice fed a high-fat diet (HFD) was collected and subjected to extensive transcriptome sequencing. Differentially expressed genes (DEGs) were identified. Enrichment of functions and signaling pathways analyses were performed based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the genes selected from RNA sequencing (RNA-seq). Eventually, we found that Pdha1fl/flLyz2-Cre mice were more susceptible to HFD-induced obesity. A total of 302 up-regulated genes and 30 down-regulated genes were screened that were differentially expressed between Pdha1fl/flLyz2-Cre mice fed the HFD and the control groups. Furthermore, we verified that significant transcriptional changes in the genes Sgstm1, Ncoa4, Rraga, Slc3a2, Usp15, Gabarapl2, Wipi1, Sh3glb1, Mtmr3, and Cd36 were consistent with the results obtained from RNA-seq analysis. In summary, this study preliminarily established that there is a close relationship between Pdha1 and obesity and revealed the possible downstream pathways and target genes involved, laying a good foundation for the further study of Pdha1 function in the future.
Project description:Proteomics of liver tissue from mice fed a high fat diet (HFD) or regular chow diet. Data accompany our paper entitled “Dynamic Regulation of N6,2′-O-dimethyladenosine (m6Am) in Obesity” scheduled for publication in Nature Communications, 2021