Non-coding RNAs shape cortical neurons developmental trajectories
Ontology highlight
ABSTRACT: A hallmark of cortical evolution is the high dynamic subventricular zone (SVZ) expansion, where basal progenitors (BPs) amplify and neuronal transcriptional programs unfold. How non-coding molecular factors such as microRNAs influence these developmental trajectories and regulate the acquisition of cortical type identities is largely unknown. Here we demonstrate that miR-137 and miR-122 regulate the positioning and identity features of superficial layer cortical neurons by acting at distinct steps of their developmental trajectories. MiR-137 sustains basal progenitor amplification by reverting their neurogenic commitment and inducing high proliferative state upregulating Cd63 and inhibiting Myt1l. Cd63 is an extra-cellular matrix (ECM) receptor which interacts with b3- and 1-integrin pathways to promote proliferation, while Myt1l is a transcription factor that promotes and sustains neuronal fate. The BPs amplification by miR-137 is converted in the promotion of intracortical projecting neuron (ICPN) identity and L2/3 expansion. As opposed to miR-137, miR-122 acts postmitotically, affecting the bioelectrical properties, the calcium and cytoskeleton dynamics of newborn neurons as well as their transcriptional program, leading to a persistent molecular immaturity across time. Overall, these findings reveal that miR-137 and miR-122 are key regulators of the developmental trajectory of cortical neurons across evolution.
ORGANISM(S): Mus musculus
PROVIDER: GSE159596 | GEO | 2022/03/09
REPOSITORIES: GEO
ACCESS DATA