Calcium-Restricted Lipid Remodeling Drives Ferroptosis Resistance
Ontology highlight
ABSTRACT: Ferroptosis is an iron-dependent form of cell death driven by biochemical and metabolic alterations resulting in oxidation within the lipid compartment. Calcium is a potent signaling molecule ascribed to diverse cellular processes including migration, neurotransmitter function, and cell death. Here we elucidate a crucial link between calcium homeostasis and ferroptotic cell death through the identification of the tetraspanin MS4A15. Ectopic MS4A15 expression specifically protects against ferroptosis by depleting endoplasmic reticulum stores. In an unexpected connection, prolonged calcium dysregulation stimulates fundamental remodeling to ferroptosis-resistant monounsaturated and plasmalogen lipid species. Application of this discovery revealed that augmenting luminal calcium sensitizes cancer cell lines previously refractory to ferroptosis. This finding provides a unique mechanistic basis for ferroptosis sensitivity and resolves a long-standing query into the role of calcium in oxidative cell death. Manipulating calcium homeostasis offers an unprecedented strategy for overcoming therapy resistance in cancer.
ORGANISM(S): Mus musculus
PROVIDER: GSE160574 | GEO | 2021/10/09
REPOSITORIES: GEO
ACCESS DATA