Oct1 cooperates with Smad transcription factors to promote mesodermal lineage specification [ChIP-seq]
Ontology highlight
ABSTRACT: The pathways used by cells to transition from undifferentiated, pluripotent gene expression programs into cell type-specific gene expression programs are incompletely understood. Here we show that the transcription factor Oct1/Pou2f1 recruits histone lysine demethylase complexes to allow for correct induction of silent, developmental lineage-specific genes and “canalize” developmental progression. Using mesodermal differentiation of inducible-conditional Oct1 knockout embryonic stem cells and single-cell gene expression profiling, we show that the potential to progress efficiently through mesodermal development is impaired in the Oct1 deficient condition. Oct1 deficient cells fail to form late presomitic mesoderm and early somite stage populations, and show “leaky” developmental trajectories with inappropriate lineage branching and accumulation of poorly differentiated cells that retain gene expression and metabolic hallmarks of pluripotency. Oct1 directly binds and regulates genes critical for developmental regulation, including genes encoding mesoderm-specific master regulators and components of chromatin regulatory complexes. Cells lacking Oct1 fail to positively resolve gene bivalency and activate gene expression by removing inhibitory H3K27me3 chromatin marks at mesoderm-specific genes. The Oct1 protein interacts with and recruits UTX to lineage-specific bivalent/poised targets, explaining the failure of Oct1 deficient cells to remove H3K27me3. Ectopic Oct1 expression improves the ability of cells to differentiate accurately under mesoderm lineage-inducing conditions.
Project description:The pathways used by cells to transition from undifferentiated, pluripotent gene expression programs into cell type-specific gene expression programs are incompletely understood. Here we show that the transcription factor Oct1/Pou2f1 recruits histone lysine demethylase complexes to allow for correct induction of silent, developmental lineage-specific genes and “canalize” developmental progression. Using mesodermal differentiation of inducible-conditional Oct1 knockout embryonic stem cells and single-cell gene expression profiling, we show that the potential to progress efficiently through mesodermal development is impaired in the Oct1 deficient condition. Oct1 deficient cells fail to form late presomitic mesoderm and early somite stage populations, and show “leaky” developmental trajectories with inappropriate lineage branching and accumulation of poorly differentiated cells that retain gene expression and metabolic hallmarks of pluripotency. Oct1 directly binds and regulates genes critical for developmental regulation, including genes encoding mesoderm-specific master regulators and components of chromatin regulatory complexes. Cells lacking Oct1 fail to positively resolve gene bivalency and activate gene expression by removing inhibitory H3K27me3 chromatin marks at mesoderm-specific genes. The Oct1 protein interacts with and recruits UTX to lineage-specific bivalent/poised targets, explaining the failure of Oct1 deficient cells to remove H3K27me3. Ectopic Oct1 expression improves the ability of cells to differentiate accurately under mesoderm lineage-inducing conditions.
Project description:The pathways used by cells to transition from undifferentiated, pluripotent gene expression programs into cell type-specific gene expression programs are incompletely understood. Here we show that the transcription factor Oct1/Pou2f1 recruits histone lysine demethylase complexes to allow for correct induction of silent, developmental lineage-specific genes and “canalize” developmental progression. Using mesodermal differentiation of inducible-conditional Oct1 knockout embryonic stem cells and single-cell gene expression profiling, we show that the potential to progress efficiently through mesodermal development is impaired in the Oct1 deficient condition. Oct1 deficient cells fail to form late presomitic mesoderm and early somite stage populations, and show “leaky” developmental trajectories with inappropriate lineage branching and accumulation of poorly differentiated cells that retain gene expression and metabolic hallmarks of pluripotency. Oct1 directly binds and regulates genes critical for developmental regulation, including genes encoding mesoderm-specific master regulators and components of chromatin regulatory complexes. Cells lacking Oct1 fail to positively resolve gene bivalency and activate gene expression by removing inhibitory H3K27me3 chromatin marks at mesoderm-specific genes. The Oct1 protein interacts with and recruits UTX to lineage-specific bivalent/poised targets, explaining the failure of Oct1 deficient cells to remove H3K27me3. Ectopic Oct1 expression improves the ability of cells to differentiate accurately under mesoderm lineage-inducing conditions.
Project description:The pathways used by cells to transition from undifferentiated, pluripotent gene expression programs into cell type-specific gene expression programs are incompletely understood. Here we show that the transcription factor Oct1/Pou2f1 recruits histone lysine demethylase complexes to allow for correct induction of silent, developmental lineage-specific genes and “canalize” developmental progression. Using mesodermal differentiation of inducible-conditional Oct1 knockout embryonic stem cells and single-cell gene expression profiling, we show that the potential to progress efficiently through mesodermal development is impaired in the Oct1 deficient condition. Oct1 deficient cells fail to form late presomitic mesoderm and early somite stage populations, and show “leaky” developmental trajectories with inappropriate lineage branching and accumulation of poorly differentiated cells that retain gene expression and metabolic hallmarks of pluripotency. Oct1 directly binds and regulates genes critical for developmental regulation, including genes encoding mesoderm-specific master regulators and components of chromatin regulatory complexes. Cells lacking Oct1 fail to positively resolve gene bivalency and activate gene expression by removing inhibitory H3K27me3 chromatin marks at mesoderm-specific genes. The Oct1 protein interacts with and recruits UTX to lineage-specific bivalent/poised targets, explaining the failure of Oct1 deficient cells to remove H3K27me3. Ectopic Oct1 expression improves the ability of cells to differentiate accurately under mesoderm lineage-inducing conditions.
Project description:The pathways used by cells to transition from undifferentiated, pluripotent gene expression programs into cell type-specific gene expression programs are incompletely understood. Here we show that the transcription factor Oct1/Pou2f1 recruits histone lysine demethylase complexes to allow for correct induction of silent, developmental lineage-specific genes and “canalize” developmental progression. Using mesodermal differentiation of inducible-conditional Oct1 knockout embryonic stem cells and single-cell gene expression profiling, we show that the potential to progress efficiently through mesodermal development is impaired in the Oct1 deficient condition. Oct1 deficient cells fail to form late presomitic mesoderm and early somite stage populations, and show “leaky” developmental trajectories with inappropriate lineage branching and accumulation of poorly differentiated cells that retain gene expression and metabolic hallmarks of pluripotency. Oct1 directly binds and regulates genes critical for developmental regulation, including genes encoding mesoderm-specific master regulators and components of chromatin regulatory complexes. Cells lacking Oct1 fail to positively resolve gene bivalency and activate gene expression by removing inhibitory H3K27me3 chromatin marks at mesoderm-specific genes. The Oct1 protein interacts with and recruits UTX to lineage-specific bivalent/poised targets, explaining the failure of Oct1 deficient cells to remove H3K27me3. Ectopic Oct1 expression improves the ability of cells to differentiate accurately under mesoderm lineage-inducing conditions.
Project description:The pathways used by cells to transition between pluripotent and tissue-specific states are incompletely understood. Here we show that the widely-expressed transcription factor Oct1/Pou2f1 activates silent, developmental lineage-appropriate genes to “canalize” developmental progression. Using Oct1 inducible knockout embryonic stem cells, we show that that Oct1 deficiency impairs mesodermal and terminal muscle differentiation in a manner that can be rescued by Oct1 retroviral expression. We show that mesoderm-specific genes are not correctly induced early in the differentiation timecourse. Oct1-deficient cells lose temporal coherence in the induction of lineage-specific genes and show inappropriate developmental lineage branching, resulting in poorly differentiated cells states retaining epithelial characteristics. In embryonic stem cells, Oct1 co-binds with Oct4 to genes critical for mesoderm induction, and continues to bind these genes during differentiation. Oct1 binding events are enriched at the termini of chromatin loops, including loops gained with differentiation. The Utx/Kdm6a histone lysine demethylase also binds to many of these genes, and using a prototypic Pax3 gene we show that Oct1 recruits Utx to remove inhibitory H3K27me3 marks and activate expression. The specificity of the ubiquitous Oct1 protein for mesodermal genes can be explained by cooperative interactions with lineage-driving Smad transcription factors, as we show that Smad and Oct binding sites frequently coexist mesoderm-specific genes, and that Oct1 and Smad3 act cooperatively at the Myog enhancer. Overall, these results identify Oct1 as a key mediator of the induction of mesoderm lineage-specific genes.
Project description:Embryonic stem cells (ESCs) co-express Oct4/POU5F1 and an Oct4 paralog known Oct1/POU2F1. To study the role of Oct1 in embryonic stem cell transcriptional control and pluripotency, we constructed germline and inducible-conditional Oct1 deficient ESC lines. ESCs lacking Oct1 show normal appearance, self-renewal, growth rates and metabolic signatures. However loss of Oct1 results in defective lineage specification. ESCs lacking Oct1 fail to form beating cardiomyocytes in culture, generate neurons poorly, form smaller, less differentiated teratomas, and are incapable of generating chimeric mice. Upon RA-mediated neuronal differentiation, Oct1 deficient cells fail to properly induce developmentally poised genes. Simultaneously, genes for alternative developmental pathways, most notably for the development of extra-embryonic tissues, are inappropriately expressed. ChIP experiments show that Oct1 does not occupy pluripotency genes or differentially expressed developmental targets in ESCs. Additionally, Oct1 occupies developmental targets as cells differentiate and Oct4 is lost. These results are consistent with a role for Oct1 in promoting the expression of lineage-specific genes in differentiating cells while simultaneously repressing genes specific for alternative lineages.
Project description:Embryonic stem cells (ESCs) co-express Oct4/POU5F1 and an Oct4 paralog known Oct1/POU2F1. To study the role of Oct1 in embryonic stem cell transcriptional control and pluripotency, we constructed germline and inducible-conditional Oct1 deficient ESC lines. ESCs lacking Oct1 show normal appearance, self-renewal, growth rates and metabolic signatures. However loss of Oct1 results in defective lineage specification. ESCs lacking Oct1 fail to form beating cardiomyocytes in culture, generate neurons poorly, form smaller, less differentiated teratomas, and are incapable of generating chimeric mice. Upon RA-mediated neuronal differentiation, Oct1 deficient cells fail to properly induce developmentally poised genes. Simultaneously, genes for alternative developmental pathways, most notably for the development of extra-embryonic tissues, are inappropriately expressed. ChIP experiments show that Oct1 does not occupy pluripotency genes or differentially expressed developmental targets in ESCs. Additionally, Oct1 occupies developmental targets as cells differentiate and Oct4 is lost. These results are consistent with a role for Oct1 in promoting the expression of lineage-specific genes in differentiating cells while simultaneously repressing genes specific for alternative lineages.
Project description:Self-organisation and coordinated morphogenesis of multiple cardiac lineages is essential for the development and function of the heart1-3. However, the absence of a human in vitro model that mimics the basic lineage architecture of the heart hinders research into developmental mechanisms and congenital defects4. Here, we describe the establishment of a reliable, lineage-controlled and high-throughput cardiac organoid platform. We show that cardiac mesoderm derived from human pluripotent stem cells robustly self-organises and differentiates into cardiomyocytes forming a cavity. Co-differentiation of cardiomyocytes and endothelial cells from cardiac mesoderm within these structures is required to form a separate endothelial layer. As in vivo, the epicardium engulfs these cardiac organoids, migrates into the cardiomyocyte layer and differentiates. We use this model to demonstrate that cardiac cavity formation is controlled by a mesodermal WNT-BMP signalling axis. Disruption of one of the key BMP targets in cardiac mesoderm, the transcription factor HAND1, interferes with cavity formation, which is consistent with its role in early heart tube and left chamber development5. Thus, the cardiac organoid platform represents a powerful resource for the quantitative and mechanistic analysis of early human cardiogenesis and defects that are otherwise inaccessible. Beyond understanding congenital heart disease, cardiac organoids provide a foundation for future translational research into human cardiac disorders.
Project description:Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%â99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. doi:10.1016/j.cell.2016.06.011 BioProject: PRJNA319573, Study: SRP073808, Bulk and single-cell RNA-seq, and ATAC-seq of of H7 human embryonic stem cells (ESC) and in vitro derived 10 diffrerent mesoderm progenitors from H7-ESC
Project description:Our understanding of how mesodermal tissue is formed, has been limited by the absence of specific and reliable markers of early mesoderm commitment. We report that mesoderm commitment from human embryonic stem cells (hESC) is initiated by Epithelial to Mesenchymal transition (EMT) as shown by gene expression profiling and by reciprocal changes in expression of the cell surface proteins, EpCAM/CD326 and NCAM/CD56. Molecular and functional assays reveal that CD326negCD56+ cells, generated from hESC in the presence of activin A, BMP4, VEGF and FGF2, represent a novel, multi-potent mesoderm-committed progenitor population. CD326negCD56+ progenitors are unique in their ability to generate all mesodermal lineages including hematopoietic, endothelial, mesenchymal (bone, cartilage, fat, fibroblast), smooth muscle and cardiomyocytes, while lacking the pluripotency of hESC. CD326negCD56+ cells are the precursors of previously reported, more lineage-restricted mesodermal progenitors. These findings present a novel approach to study how germ layer specification is regulated, and offer a unique target for tissue engineering. We used microarrays to compare gene expression profile of early mesodermal progenitors with undifferentiated hESC (H9 line). Mesoderm induction from hESC was initiatiated with combination of morphogens and growth factors including activin A, bone morphogenic protein 4, basic fibroblast growth factor and vascular endothelial growth factor. Proposed mesodermal progenitor population was isolated by FACS on day 3.5 of culture based on the presence of CD56 expression and the absenbce of CD326 expression.